Skip to content

Python implementation of domain-invariant partial least squares regression (di-PLS)

License

Notifications You must be signed in to change notification settings

B-Analytics/diPLSlib

Folders and files

NameName
Last commit message
Last commit date

Latest commit

92659d0 · Dec 13, 2024

History

82 Commits
Oct 30, 2024
Dec 11, 2024
Oct 30, 2024
Dec 13, 2024
Dec 13, 2024
Dec 13, 2024
Dec 11, 2024
Nov 20, 2024
Nov 20, 2024
Nov 2, 2024
Jan 14, 2021
Dec 13, 2024
Dec 13, 2024
Jan 14, 2021
Nov 3, 2024
Dec 13, 2024

Repository files navigation

diPLSlib: A Python library for domain adaptation in multivariate calibration

diPLSlib has been created to build privacy-preserving regression models and to perform calibration model maintenance by domain adaptation. It has a scikit-learn compatible API and features following methods:

  • (Multiple) Domain-invariant partial least squares regression (di-PLS/mdi-PLS)
  • Graph-based calibration transfer (GCT-PLS)
  • ( ϵ , δ ) -differentially private partial least squares regression (edPLS)

Citation: If you use this library in your research, please cite the following reference:

Nikzad-Langerodi R.(2024). diPLSlib : A Python library for domain adaptation in multivariate calibration (version 2.4.1). URL: https://di-pls.readthedocs.io/

or in Bibtex format :

@misc{nikzad2024diPLSlib,
author = {Nikzad-Langerodi, Ramin},
month = {12},
title = {diPLSlib: A Python library for domain adaptation in multivariate calibration},
url = {https://di-pls.readthedocs.io/},
year = {2024}
}

Installation

pip install diPLSlib

Quick Start

How to apply di-PLS

Train regression model

from diPLSlib.models import DIPLS
from diPLSlib.utils import misc

l = 100000                    # or l = (10000, 100) Regularization
m = DIPLS(A=2, l=l)
m.fit(X, y, X_source, X_target)

# Typically X=X_source and y are the corresponding response values

Apply the model

yhat_dipls = m.predict(X_test)
err = misc.rmse(y_test, yhat_dipls)

How to apply mdi-PLS

from diPLSlib.models import DIPLS

l = 100000                    # or l = (5, 100, 1000)  Regularization
m = DIPLS(A=3, l=l, target_domain=2)
m.fit(X, y, X_source, X_target)

# X_target = [X1, X2, ... , Xk] is a list of target domain data
# The parameter target_domain specifies for which domain the model should be trained (here X2).

How to apply GCT-PLS

from diPLSlib.models import GCTPLS

# Training
l = 10                         # or l = (10, 10) Regularization
m = GCTPLS(A=2, l=l)
m.fit(X, y, X_source, X_target)

# X_source and X_target hold the same samples measured in the source and target domain, respectively.

How to apply EDPLS

from diPLSlib.models import EDPLS

# Training
epsilon = 1                      # Privacy loss
delta = 0.05                     # Failure probability of the privacy guarantee
m = EDPLS(A=2, epsilon=epsilon, delta=delta)
m.fit(X, y)

Examples

For more examples, please refer to the Notebooks:

Documentation

The documentation can be found here.

Acknowledgements

The first version of di-PLS was developed by Ramin Nikzad-Langerodi, Werner Zellinger, Edwin Lughofer, Bernhard Moser and Susanne Saminger-Platz and published in:

Further refinements to the initial algorithm were published in:

  • R. Nikzad-Langerodi, W. Zellinger, S. Saminger-Platz and B. Moser, "Domain-Invariant Regression Under Beer-Lambert's Law," 2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA), Boca Raton, FL, USA, 2019, pp. 581-586, https://doi.org/10.1109/ICMLA.2019.00108.

  • Ramin Nikzad-Langerodi, Werner Zellinger, Susanne Saminger-Platz, Bernhard A. Moser, Domain adaptation for regression under Beer–Lambert’s law, Knowledge-Based Systems, Volume 210, 2020, https://doi.org/10.1016/j.knosys.2020.106447.

  • Bianca Mikulasek, Valeria Fonseca Diaz, David Gabauer, Christoph Herwig, Ramin Nikzad-Langerodi, "Partial least squares regression with multiple domains" Journal of Chemometrics 2023 37 (5), e3477, https://doi.org/10.13140/RG.2.2.23750.75845

  • Ramin Nikzad-Langerodi & Florian Sobieczky (2021). Graph‐based calibration transfer. Journal of Chemometrics, 35(4), e3319. https://doi.org/10.1002/cem.3319

  • Ramin Nikzad-Langerodi, Mohit Kumar, Du Nguyen Duy, and Mahtab Alghasi (2024), "(epsilon, delta)-Differentially Private Partial Least Squares Regression", unpublished.

Contact us

Bottleneck Analytics GmbH
info@bottleneck-analytics.com