-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGroq_Chat.py
116 lines (93 loc) · 3.74 KB
/
Groq_Chat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
import os
from dotenv import load_dotenv
import PyPDF2
from langchain_community.embeddings import OllamaEmbeddings
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import Chroma
from langchain.chains import ConversationalRetrievalChain
from langchain_groq import ChatGroq
from langchain.memory import ChatMessageHistory, ConversationBufferMemory
import chainlit as cl
load_dotenv()
groq_api_key = os.environ['GROQ_API_KEY']
llm_groq = ChatGroq(groq_api_key=groq_api_key, model_name='gemma-7b-it')
@cl.on_chat_start
async def on_chat_start():
files = None # Initialize variable to store uploaded files
# Wait for the user to upload a file
while files is None:
files = await cl.AskFileMessage(
content="Please upload a pdf file to begin!",
accept=["application/pdf"],
max_size_mb=100,
max_files=10,
timeout=180,
).send()
# Process each uploaded file
texts = []
metadatas = []
for file in files:
print(file)
pdf = PyPDF2.PdfReader(file.path)
pdf_text = ""
for page in pdf.pages:
pdf_text += page.extract_text()
# Split text into chunks
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1200, chunk_overlap=50)
file_texts = text_splitter.split_text(pdf_text)
texts.extend(file_texts)
# Create metadata for each chunk
file_metadatas = [{"source": f"{i}-{file.name}"} for i in range(len(file_texts))]
metadatas.extend(file_metadatas)
# Create a Chroma vector store
embeddings = OllamaEmbeddings(model="nomic-embed-text")
docsearch = await cl.make_async(Chroma.from_texts)(
texts, embeddings, metadatas=metadatas
)
# Initialize message history for conversation
message_history = ChatMessageHistory()
# Memory for conversational context
memory = ConversationBufferMemory(
memory_key="chat_history",
output_key="answer",
chat_memory=message_history,
return_messages=True,
)
# Create a chain that uses the Chroma vector store
chain = ConversationalRetrievalChain.from_llm(
llm=llm_groq,
chain_type="stuff",
retriever=docsearch.as_retriever(),
memory=memory,
return_source_documents=True,
)
# Display an image with the number of files
elements = [
cl.Image(name="image", display="inline", path="pdf bot.png")
]
# Inform user that the processing has ended
msg = cl.Message(content=f"Processing {len(files)} files done. You can now ask questions!", elements=elements)
await msg.send()
# Store the chain in user session
cl.user_session.set("chain", chain)
@cl.on_message
async def main(message: cl.Message):
# Retrieve the chain from user session
chain = cl.user_session.get("chain")
# Callbacks happen asynchronously/parallel
cb = cl.AsyncLangchainCallbackHandler()
# Call the chain with user's message content
res = await chain.ainvoke(message.content, callbacks=[cb])
answer = res["answer"]
source_documents = res["source_documents"]
text_elements = [] # Initialize list to store text elements
# # Process source documents if available
# if source_documents:
# for source_idx, source_doc in enumerate(source_documents):
# source_name = f"source_{source_idx}"
# # Create the text element referenced in the message
# text_elements.append(
# cl.Text(content=source_doc.page_content, name=source_name)
# )
# Return results without source references
await cl.Message(content=answer, elements=text_elements).send()