-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpegasos_solver.py
120 lines (99 loc) · 3.98 KB
/
pegasos_solver.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
import numpy as np
import torch
import time
class Pegasos:
def __init__(self, lambd = 1, num_iter = 10000, loss_fn_type='hinge'):
self.lambd = lambd
self.num_iter = num_iter
self.loss_fn_type = loss_fn_type
def fit(self, X, y):
np.random.seed(1397)
self.w = np.zeros(X.shape[1])
X,y = self.check_data(X, y)
for t in range(1, self.num_iter+1):
eta = 1/(self.lambd*t)
i = np.random.randint(X.shape[0])
if self.loss_fn_type == 'hinge':
if y[i]*np.dot(self.w, X[i]) < 1:
self.w = (1 - eta*self.lambd)*self.w + eta*y[i]*X[i]
else:
self.w = (1 - eta*self.lambd)*self.w
elif self.loss_fn_type == 'logistic':
self.w = (1 - eta*self.lambd)*self.w + eta*y[i]*X[i]/(1 + np.exp(y[i]*np.dot(self.w, X[i])))
def check_data(self, X, y):
if type(X) == torch.Tensor:
X = X.detach().cpu().numpy()
if type(y) == torch.Tensor:
y = y.detach().cpu().numpy()
if np.min(y) == 0:
y = 2*y - 1
return X, y
def predict(self, X):
return np.sign(np.dot(X, self.w))
class Pegasos_kernel:
def __init__(self, lambd = 1, num_iter = 10000, kernel = None, loss_fn_type='hinge'):
self.lambd = lambd
self.num_iter = num_iter
self.kernel = kernel
self.loss_fn_type = loss_fn_type
self.X = None
self.y = None
self.alpha = None
def fit(self, X, y):
np.random.seed(1397)
self.check_data(X, y)
self.alpha = np.zeros(self.X.shape[0])
batch_size = 5000
num_batches = self.num_iter//batch_size
self.num_iter = num_batches*batch_size
# acc = 0
# acc1 = 0
for i in range(num_batches):
upd_idx = np.random.randint(low = 0, high = self.X.shape[0], size=batch_size)
kernels = None
if batch_size > len(self.X):
kernels = self.kernel(self.X, self.X)
else:
kernels = self.kernel(self.X, self.X[upd_idx])
for t in range(1, batch_size+1):
# i = np.random.randint(self.X.shape[0])
# s1 = time.time()
# kernel_value = self.kernel(self.X, self.X[i].reshape(1,-1)).reshape(-1)
cur_t = t + i*batch_size
idx = upd_idx[t-1]
if batch_size > len(self.X):
kernel_value = kernels[:, idx].reshape(-1)
else:
kernel_value = kernels[:, t-1].reshape(-1)
# start = time.time()
kernel_value = self.alpha * self.y * kernel_value
if self.loss_fn_type == 'hinge':
if self.y[idx]*np.sum(kernel_value) < self.lambd*cur_t:
self.alpha[idx] += 1
elif self.loss_fn_type == 'logistic':
self.alpha[idx] += 1/(1 + np.exp(self.y[idx]*np.sum(kernel_value)))
# end = time.time()
# acc += end - start
# acc1 += start - s1
# if t % 100 == 0:
# print("Kernel Calculation : ", acc1/100)
# print("Rest Calculation : ", acc/100)
# acc = 0
# acc1 = 0
del kernels
# print(np.sum(self.alpha)/self.num_iter)
def check_data(self, X, y):
if type(X) == torch.Tensor:
self.X = X.detach().cpu().numpy()
else:
self.X = X
if type(y) == torch.Tensor:
self.y = y.detach().cpu().numpy()
else:
self.y = y
if np.min(self.y) == 0:
self.y = 2*(self.y) - 1
def predict(self, X):
coef = (self.alpha*self.y)
kernel_value = self.kernel(self.X, X)
return (np.sign(np.dot(coef, kernel_value)) * 0.5 + 0.5).astype(int)