-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathclassifier_config.yaml
249 lines (229 loc) · 4.84 KB
/
classifier_config.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
Decision Tree:
criterion:
type: combo
options: [gini, entropy, log_loss]
default: gini
help: Split quality function
max_depth:
type: numeric
default: None
help: Max depth (None=unbounded)
Random Forest:
n_estimators:
type: numeric
default: "100"
help: Number of trees (e.g. 50-300)
criterion:
type: combo
options: [gini, entropy, log_loss]
default: gini
help: Split quality function
max_depth:
type: numeric
default: None
help: Max depth (None=unbounded)
Extra Trees:
n_estimators:
type: numeric
default: "100"
help: Number of trees (e.g. 50-300)
criterion:
type: combo
options: [gini, entropy, log_loss]
default: gini
help: Split quality function
max_depth:
type: numeric
default: None
help: Max depth (None=unbounded)
KNN:
n_neighbors:
type: numeric
default: "5"
help: Number of neighbors (1-20 typical)
weights:
type: combo
options: [uniform, distance]
default: uniform
help: Uniform or distance-based weighting
SVM:
kernel:
type: combo
options: [linear, rbf, poly, sigmoid]
default: rbf
help: SVM kernel type
C:
type: numeric
default: "1.0"
help: Regularization strength (0.001-100)
LDA:
solver:
type: combo
options: [svd, lsqr, eigen]
default: svd
help: LDA solver
Logistic Regression:
solver:
type: combo
options: [lbfgs, newton-cg, liblinear, sag, saga]
default: lbfgs
help: Solver for optimization
max_iter:
type: numeric
default: "1000"
help: Max iteration count
C:
type: numeric
default: "1.0"
help: Inverse reg. strength (0.001-100)
Ridge:
alpha:
type: numeric
default: "1.0"
help: Regularization strength (0.0+)
Naive Bayes:
var_smoothing:
type: numeric
default: "1e-9"
help: Stability var. (1e-12 ~ 1e-7 typical)
MLP:
hidden_layer_sizes:
type: text
default: "(100, )"
help: Layer sizes tuple, e.g. (100,50)
activation:
type: combo
options: [identity, logistic, tanh, relu]
default: relu
help: Activation function
solver:
type: combo
options: [lbfgs, sgd, adam]
default: adam
help: MLP solver
alpha:
type: numeric
default: "0.0001"
help: L2 penalty parameter
max_iter:
type: numeric
default: "1000"
help: Max training iterations
SGD:
loss:
type: combo
options: [hinge, log, modified_huber, squared_hinge, perceptron]
default: hinge
help: Loss function
penalty:
type: combo
options: [l2, l1, elasticnet]
default: l2
help: Regularization type
alpha:
type: numeric
default: "0.0001"
help: Constant for regularization
Gradient Boosting:
n_estimators:
type: numeric
default: "100"
help: Number of boosting stages
learning_rate:
type: numeric
default: "0.1"
help: Learning rate (0.01-1.0 typical)
max_depth:
type: numeric
default: "3"
help: Max depth (1-10 typical)
AdaBoost:
n_estimators:
type: numeric
default: "100"
help: Number of boosting stages
learning_rate:
type: numeric
default: "1.0"
help: Weight applied to each classifier
XGBoost:
n_estimators:
type: numeric
default: "100"
help: Number of boosting rounds
learning_rate:
type: numeric
default: "0.1"
help: Step size shrinkage (0.01-0.3 typical)
max_depth:
type: numeric
default: "3"
help: Max tree depth (1-10 typical)
QDA:
reg_param:
type: numeric
default: "0.0"
help: Regularization parameter (0.0-1.0)
Bernoulli NB:
alpha:
type: numeric
default: "1.0"
help: Additive smoothing parameter (0.0+)
binarize:
type: numeric
default: "0.0"
help: Threshold for binarizing features
Multinomial NB:
alpha:
type: numeric
default: "1.0"
help: Additive smoothing parameter (0.0+)
fit_prior:
type: combo
options: [True, False]
default: True
help: Learn class prior probabilities
CatBoost:
iterations:
type: numeric
default: "100"
help: Number of trees
learning_rate:
type: numeric
default: "0.1"
help: Learning rate (0.01-0.3 typical)
depth:
type: numeric
default: "6"
help: Depth of trees (1-10 typical)
LightGBM:
n_estimators:
type: numeric
default: "100"
help: Number of boosting rounds
learning_rate:
type: numeric
default: "0.1"
help: Learning rate
max_depth:
type: numeric
default: "-1"
help: Max tree depth (-1 for no limit)
Passive Aggressive:
C:
type: numeric
default: "1.0"
help: Maximum step size (C > 0)
max_iter:
type: numeric
default: "1000"
help: Maximum number of iterations
Perceptron:
alpha:
type: numeric
default: "0.0001"
help: Regularization parameter
max_iter:
type: numeric
default: "1000"
help: Number of iterations