forked from leaningtech/webvm
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
feature: adding go and the LFT RSA-Toy lab
- Loading branch information
Showing
3 changed files
with
228 additions
and
5 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,3 @@ | ||
module toy-rsa | ||
|
||
go 1.20 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,221 @@ | ||
package main | ||
|
||
import ( | ||
"bufio" | ||
"context" | ||
"crypto/sha256" | ||
"fmt" | ||
"math/big" | ||
"math/rand" | ||
"os" | ||
"os/signal" | ||
"strings" | ||
"syscall" | ||
) | ||
|
||
// RSA struct to hold the prime numbers p and q, their product n, and the totient t | ||
type RSA struct { | ||
p, q, n, t *big.Int | ||
} | ||
|
||
// NewRSA constructs an RSA instance with given prime numbers p and q | ||
func NewRSA(p, q int64) *RSA { | ||
pBig := big.NewInt(p) // Convert p to big.Int | ||
qBig := big.NewInt(q) // Convert q to big.Int | ||
n := new(big.Int).Mul(pBig, qBig) // Compute n = p * q | ||
t := new(big.Int).Mul( // Compute t = (p-1) * (q-1) | ||
new(big.Int).Sub(pBig, big.NewInt(1)), | ||
new(big.Int).Sub(qBig, big.NewInt(1))) | ||
return &RSA{pBig, qBig, n, t} | ||
} | ||
|
||
// PubKey computes and returns the public key for the RSA instance | ||
func (rsa *RSA) PubKey() *big.Int { | ||
for i := int64(2); i < rsa.t.Int64(); i++ { | ||
if new(big.Int).GCD(nil, nil, big.NewInt(i), rsa.t).Cmp(big.NewInt(1)) == 0 { | ||
return big.NewInt(i) // Return i as public key if GCD(i, t) is 1 | ||
} | ||
} | ||
return big.NewInt(0) // Should not reach here | ||
} | ||
|
||
// PrivKey computes and returns the private key for the RSA instance | ||
func (rsa *RSA) PrivKey() *big.Int { | ||
e := rsa.PubKey() // Get public key | ||
j := big.NewInt(0) // Initialize j to 0 | ||
one := big.NewInt(1) // Define one as big.Int value 1 | ||
for { | ||
if new(big.Int).Mod(new(big.Int).Mul(j, e), rsa.t).Cmp(one) == 0 { | ||
return j // Return j as private key if (j * e) mod t is 1 | ||
} | ||
j.Add(j, one) // Increment j by 1 | ||
} | ||
} | ||
|
||
// encryptInteger encrypts an integer using the RSA public key | ||
func encryptInteger(rsa *RSA, mes int) *big.Int { | ||
e := rsa.PubKey() // Get public key | ||
ct := new(big.Int).Exp(big.NewInt(int64(mes)), e, rsa.n) // Compute ciphertext as (mes^e) mod n | ||
return ct // Return ciphertext | ||
} | ||
|
||
// decryptInteger decrypts an integer using the RSA private key | ||
func decryptInteger(rsa *RSA, ct *big.Int) *big.Int { | ||
d := rsa.PrivKey() // Get private key | ||
mes := new(big.Int).Exp(ct, d, rsa.n) // Compute message as (ct^d) mod n | ||
return mes // Return decrypted message | ||
} | ||
|
||
// signInteger signs an integer (hash) using the RSA private key | ||
func signInteger(rsa *RSA, hash int) *big.Int { | ||
d := rsa.PrivKey() | ||
sig := new(big.Int).Exp(big.NewInt(int64(hash)), d, rsa.n) // Compute signature as (hash^d) mod n | ||
return sig // Return signature | ||
} | ||
|
||
// verifySignedInteger verifies a signed integer using the RSA public key | ||
func verifySignedInteger(rsa *RSA, sig *big.Int) *big.Int { | ||
e := rsa.PubKey() | ||
hash := new(big.Int).Exp(sig, e, rsa.n) // Compute hash as (sig^e) mod n | ||
return hash // Return hash | ||
} | ||
|
||
// Main function to setup signal handling and run the exercise function | ||
func main() { | ||
ctx, stop := signal.NotifyContext(context.Background(), syscall.SIGINT, syscall.SIGTERM) | ||
defer stop() | ||
fmt.Println( | ||
`๐๐ This exercise is taken from the LinuxFoundationTraining Course LFS183x. The instructions are on their original github https://github.com/lftraining/LFS183x-resources/tree/main/lab-1-toy-rsa `, | ||
) | ||
go exercise() | ||
|
||
<-ctx.Done() | ||
} | ||
|
||
// Exercise function to handle the logic for interacting with the user, | ||
// encrypting and decrypting messages, and signing / verifying signatures | ||
// using the defined RSA functions above. | ||
func exercise() { | ||
r := bufio.NewReader(os.Stdin) | ||
toyRSA := NewRSA(53, 59) | ||
|
||
for { | ||
fmt.Print("Enter a plain-text message: ") | ||
|
||
message, _ := r.ReadString('\n') | ||
message = strings.TrimSpace(message) | ||
fmt.Println() | ||
|
||
fmt.Println( | ||
`๐ The program will now encrypt the provided message using the encryptInteger function | ||
which takes each character of the message, converts it to an integer,and encrypts it | ||
using the RSA public key.`) | ||
waitUserInput(r) | ||
|
||
// Encrypting each character of the message | ||
var encryptedMessage []*big.Int | ||
for _, c := range message { | ||
num := int(c) | ||
encryptedInt := encryptInteger(toyRSA, num) | ||
encryptedMessage = append(encryptedMessage, encryptedInt) | ||
} | ||
|
||
fmt.Printf("The encrypted message is: %v\n\n", encryptedMessage) | ||
fmt.Println( | ||
`๐ The program will now decrypt your provided message using the decryptInteger function, | ||
which takes each encrypted integer and decrypts it using the RSA private key, converting | ||
it back to the original character.`) | ||
waitUserInput(r) | ||
|
||
// Decrypting each encrypted integer | ||
var decryptedMessage string | ||
for _, i := range encryptedMessage { | ||
num := decryptInteger(toyRSA, i) | ||
character := string(rune(num.Int64())) | ||
decryptedMessage += character | ||
} | ||
|
||
fmt.Printf("The decrypted message is: %v\n\n", decryptedMessage) | ||
fmt.Println( | ||
`๐ The program will now generate the message signature using the signInteger function | ||
which it takes the SHA 256 hash of the message and signs it using the RSA private key.`) | ||
waitUserInput(r) | ||
|
||
// Signing the message | ||
hasher := sha256.New() | ||
hasher.Write([]byte(message)) | ||
messageHash := fmt.Sprintf("%x", hasher.Sum(nil)) | ||
|
||
// Signing each character of the message hash | ||
var messageSignature []*big.Int | ||
for _, c := range messageHash { | ||
num := int(c) | ||
sig := signInteger(toyRSA, num) | ||
messageSignature = append(messageSignature, sig) | ||
} | ||
|
||
fmt.Printf("The message signature is: %v\n\n", messageSignature) | ||
fmt.Println( | ||
`๐๐ The program will now generate the message hash using the verifySignedInteger function | ||
which takes the signature and verifies it using the RSA public key, deriving the original hash.`, | ||
) | ||
waitUserInput(r) | ||
|
||
// Verifying the message signature | ||
var hashComparison string | ||
for _, i := range messageSignature { | ||
num := verifySignedInteger(toyRSA, i) | ||
character := string(rune(num.Int64())) | ||
hashComparison += character | ||
} | ||
|
||
fmt.Printf("The message hash is: %v\n", messageHash) | ||
fmt.Printf("The hash derived from the message signature is: %v\n\n", hashComparison) | ||
|
||
fmt.Println( | ||
`๐จ To illustrate the effect of changing a single character to the encrypted output, | ||
the program will now append a random character to your provided message.`) | ||
waitUserInput(r) | ||
|
||
// Appending a random uppercase letter to create message2 | ||
message2 := message + string(rune(rand.Intn(26)+65)) | ||
|
||
fmt.Printf("The plain-text message with one character appended is: %v\n\n", message2) | ||
fmt.Println( | ||
`๐ The program will now generate the message signature for the edited message, it takes | ||
the SHA256 hash of the edited message and signs it using the RSA private key.`, | ||
) | ||
waitUserInput(r) | ||
|
||
// Signing the edited message | ||
hasher2 := sha256.New() | ||
hasher2.Write([]byte(message2)) | ||
messageHash2 := fmt.Sprintf("%x", hasher2.Sum(nil)) | ||
|
||
// Signing each character of the edited message hash | ||
var messageSignature2 []*big.Int | ||
for _, c := range messageHash2 { | ||
num := int(c) | ||
sig := signInteger(toyRSA, num) | ||
messageSignature2 = append(messageSignature2, sig) | ||
} | ||
|
||
fmt.Printf("The message signature with only one character appended is: %v\n\n\n", messageSignature2) | ||
|
||
fmt.Println( | ||
`๐๐๐ฎ Congratulations! You've gone through the basics of the RSA algorithm | ||
and are one step closer to demystifying cryptography! ๐ฎ๐๐ | ||
> Would you like to go through the process again? | ||
Press Enter to continue or Ctrl+C to exit.`) | ||
_, _ = r.ReadString('\n') | ||
fmt.Print("\n\n") | ||
} | ||
} | ||
|
||
// waitUserInput wait until the user press Enter. | ||
func waitUserInput(r *bufio.Reader) { | ||
fmt.Println() | ||
fmt.Println("> Press Enter to continue.") | ||
_, _ = r.ReadString('\n') | ||
} |