-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathbest_in_dataset.py
130 lines (103 loc) · 4.05 KB
/
best_in_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
from transformers import HfArgumentParser
import torch
import torch.multiprocessing
torch.multiprocessing.set_sharing_strategy("file_system")
from torch.utils.data import DataLoader, ConcatDataset
from t5 import T5IUPACTokenizer, T5Collator
from iupac_dataset import IUPACDataset
from physprop_exp import levenshtein_distance
from dataclasses import dataclass, field
from typing import Dict, Optional
import sys
import os
import itertools
from itertools import dropwhile
from multiprocessing import Pool
import numpy as np
from scipy import ndimage
@dataclass
class IUPACArguments:
dataset_dir: str = field(
metadata={"help": "Directory where dataset is locaed"}
)
vocab_fn: str = field(
metadata={"help": "File containing sentencepiece model"}
)
dataset_filename: str = field(
default="iupacs_logp.txt",
metadata={"help": "Filename within dataset_dir containing the data"}
)
name_col: Optional[str] = field(
default="Preferred", # for logp
metadata={"help": "Name of column with IUPAC names"}
)
def main():
parser = HfArgumentParser(IUPACArguments)
iupac_args, = parser.parse_args_into_dataclasses()
global tokenizer
tokenizer = T5IUPACTokenizer(vocab_file=iupac_args.vocab_fn)
pad = tokenizer._convert_token_to_id("<pad>")
unk = tokenizer._convert_token_to_id("<unk>")
dataset_kwargs = {
"dataset_dir": iupac_args.dataset_dir,
"tokenizer": tokenizer,
"max_length": 128,
"prepend_target": False,
"mean_span_length": 3,
"mask_probability": 0,
#"dataset_size": 200000,
}
pubchem_train = IUPACDataset(train=True, **dataset_kwargs)
pubchem_val = IUPACDataset(train=False, **dataset_kwargs)
pubchem = ConcatDataset([pubchem_train, pubchem_val])
batch_size = 2048
collator = T5Collator(tokenizer.pad_token_id)
def collate(batch):
# [:-1] to remove </s>
input_ids = [d["input_ids"][:-1] for d in batch]
lengths = torch.tensor([d.numel() for d in input_ids])
return torch.hstack([torch.tensor([len(batch)]), lengths] + input_ids)
loader = DataLoader(pubchem,
batch_size=batch_size,
num_workers=72,
collate_fn=collate)
# we'll find clusters for each input molecule
input_iupacs = [n.strip() for n in sys.stdin.readlines()]
# [:-1] to get rid of </s>
base_tokenizeds = [tokenizer(b)["input_ids"][:-1] for b in input_iupacs]
base_tokenizeds = [torch.tensor(t)
for t in base_tokenizeds if len(t) >= 10 and unk not in t]
potentially_reachables = []
for batch_idx, batch in enumerate(loader):
#num_processed = batch_idx * batch_size
#if batch_idx % 200 == 0:
# print("completed {}/{} ({:>5.3f}%)...".format(num_processed, len(pubchem), num_processed / len(pubchem) * 100))
bs = batch[0]
lengths = batch[1:bs + 1]
tokenizeds = torch.split(batch[bs + 1:], lengths.tolist())
potentially_reachables += tokenizeds
pairs = list(itertools.product(potentially_reachables, base_tokenizeds))
pool = Pool(144)
is_reachable = pool.starmap(check_if_reachable, pairs)
pool.close()
pool.join()
def check_if_reachable(tokenized, base_tokenized):
global tokenizer
tokenized_bag = set(tokenized.tolist())
base_bag = set(base_tokenized.tolist())
if len(tokenized_bag ^ base_bag) >= 15:
return False
if abs(len(tokenized) - len(base_tokenized)) > 15:
return False
dist, src_mask, _ = levenshtein_distance(base_tokenized, tokenized)
src_dilated = ndimage.binary_fill_holes(src_mask).astype(int)
# we used span lengths 1-5 in gen_t5.py
if 1 <= src_dilated.sum() <= 5:
# this is a match
base_iupac = tokenizer.decode(base_tokenized)
decoded = tokenizer.decode(tokenized)
print('"{}","{}"'.format(base_iupac, decoded))
return True
return False
if __name__ == "__main__":
main()