Skip to content

Releases: Ashu11-A/Manga-Segment

🌟 YoloV8s Dataset v0.2

25 Jan 04:20
Compare
Choose a tag to compare

Metadata

  • Type: Yolov8s
  • Filter: [64,128,256,512,768]
  • Kernel Size: 3
  • Train Size: 1400 × 1400
  • Images Size: 963 × 1400

Preprocessing Images

  • Auto-Orient: Applied
  • Resize: Fit (white edges) in 963x1400
  • Auto-Adjust Contrast: Using Contrast Stretching

Augmentations for Images

  • Flip: Horizontal, Vertical
  • Rotation: Between -15° and +15°
  • Grayscale: Apply to 100% of images
  • Exposure: Between -10% and +10%
  • Blur: Up to 1px
  • Noise: Up to 0.5% of pixels

Training data

  • 480 Images (with generated images, original size 200)
  • 420 for training (image set)
  • 40 for validation (image set)
  • 20 for test (image set)
  • 4430 annotations (1846 without the generated images)

Train Accuracy

Precision(M) Recall(M) mAP50(M) mAP50-95(M) CLS Loss DFL Loss
0.96524 0.97068 0.98096 0.91488 0.31534 1.04077

results

✨ YoloV11s Dataset v0.2

25 Jan 04:23
Compare
Choose a tag to compare

Metadata

  • Type: Yolo
  • Filter: [64, 128, 256, 512, 1024]
  • Kernel Size: 3
  • Train Size: 1400 × 1400
  • Images Size: 963 × 1400

Preprocessing Images

  • Auto-Orient: Applied
  • Resize: Fit (white edges) in 963x1400
  • Auto-Adjust Contrast: Using Contrast Stretching

Augmentations for Images

  • Flip: Horizontal, Vertical
  • Rotation: Between -15° and +15°
  • Grayscale: Apply to 100% of images
  • Exposure: Between -10% and +10%
  • Blur: Up to 1px
  • Noise: Up to 0.5% of pixels

Training data

  • 480 Images (with generated images, original size 200)
  • 420 for training (image set)
  • 40 for validation (image set)
  • 20 for test (image set)
  • 4430 annotations (1846 without the generated images)

Train Accuracy

Precision(M) Recall(M) mAP50(M) mAP50-95(M) CLS Loss DFL Loss
0.96811 0.96575 0.98058 0.92454 0.27078 1.03036

results

⭐ YoloV8n Dataset v0.1

25 Jan 03:52
Compare
Choose a tag to compare

Metadata

  • Type: Yolo
  • Seed: 369
  • Filter: [64, 128, 256, 512, 768]
  • Kernel Size: 3
  • Dropout: 0.0
  • Train Size: 1280 × 1280
  • Images Size: 963 × 1400

Preprocessing Images

  • Auto-Orient: Applied
  • Resize: Stretch to 963 × 1400
  • Auto-Adjust Contrast: Using Contrast Stretching
  • Grayscale: Applied

Augmentations for Images

  • Outputs per training example: 3
  • Flip: Horizontal, Vertical
  • Blur: Up to 0.5px
  • Noise: Up to 0.5% of pixels

Training data

  • 283 Images (with generated images, original size 117)
  • 249 for training (image set)
  • 22 for validation (image set)
  • 12 for test (image set)

Train Accuracy

Precision Recall mAP50 mAP50-95 CLS Loss DFL Loss Fitness
0.96808 0.9731 0.97648 0.93864 0.25748 0.98696 1.87714

results

☢️ [Beta] Model - 473

18 Jan 21:06
48beb42
Compare
Choose a tag to compare

Metadata

  • ID: 473
  • Type: Unet
  • Val Accuracy: 0.7444
  • filter: [32, 64, 128, 256, 512]
  • Kernel Size: 3
  • Dropout: 0.2
  • Size image: 512 x 768

Training data

  • 3.882 Images (with generated images, original size 1.941)
  • 1552 for training (image set)
  • 388 for validation (image set)

Kaette Kudasai! Akutsu-san

  • Ch. 2 - 49

The Dangers in My Heart

  • Ch. 1 - 10

Yofukashi no Uta

  • Ch. 1 - 10
  • Ch.190 - 196

❌ [Beta] Model - 382

09 Jan 06:54
Compare
Choose a tag to compare
Pre-release

Metadata

  • ID: 382
  • Type: Unet
  • Val Accuracy: [0.90806] <-- That's a mistake, it's not real, it's not possible
  • filter: [32, 64, 128, 256, 512]
  • Kernel Size: 7
  • Dropout: 0.2
  • Size image: 512 x 768

Training data

  • 1.956 Images (with generated images, original size 978)
  • 783 for training (image set)
  • 195 for validation (image set)

Oroka na Tenshi wa Akuma to Odoru

  • Ch. 1

The Dangers in My Heart

  • Ch. 1 - 10

Yofukashi no Uta

  • Ch. 1 - 10
  • Ch.190 - 196