forked from dvlab-research/LongLoRA
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmerge_lora_weights_and_save_hf_model.py
113 lines (98 loc) · 3.93 KB
/
merge_lora_weights_and_save_hf_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
# Written by Yukang Chen
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import torch
import argparse
import transformers
from peft import PeftModel
from typing import Dict
IGNORE_INDEX = -100
DEFAULT_PAD_TOKEN = "[PAD]"
DEFAULT_EOS_TOKEN = "</s>"
DEFAULT_BOS_TOKEN = "<s>"
DEFAULT_UNK_TOKEN = "<unk>"
def parse_config():
parser = argparse.ArgumentParser(description='arg parser')
parser.add_argument('--base_model', type=str, default="/data/pretrained-models/llama-7b-hf")
parser.add_argument('--peft_model', type=str, default=None, help='')
parser.add_argument('--context_size', type=int, default=-1, help='context size during fine-tuning')
parser.add_argument('--save_path', type=str, default=None, help='')
parser.add_argument('--cache_dir', type=str, default=None, help='./cache_dir')
args = parser.parse_args()
return args
def smart_tokenizer_and_embedding_resize(
special_tokens_dict: Dict,
tokenizer: transformers.PreTrainedTokenizer,
model: transformers.PreTrainedModel,
):
"""Resize tokenizer and embedding.
Note: This is the unoptimized version that may make your embedding size not be divisible by 64.
"""
num_new_tokens = tokenizer.add_special_tokens(special_tokens_dict)
model.resize_token_embeddings(len(tokenizer))
if num_new_tokens > 0:
input_embeddings = model.get_input_embeddings().weight.data
output_embeddings = model.get_output_embeddings().weight.data
input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(dim=0, keepdim=True)
output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(dim=0, keepdim=True)
input_embeddings[-num_new_tokens:] = input_embeddings_avg
output_embeddings[-num_new_tokens:] = output_embeddings_avg
def main(args):
device = "cuda:0"
torch.cuda.set_device(device)
print("base model", args.base_model)
print("peft model", args.peft_model)
# Load model and tokenizer
model = transformers.AutoModelForCausalLM.from_pretrained(
args.base_model,
cache_dir=args.cache_dir,
torch_dtype=torch.float16,
device_map="auto",
)
tokenizer = transformers.AutoTokenizer.from_pretrained(
args.base_model,
cache_dir=args.cache_dir,
model_max_length=args.context_size,
padding_side="right",
use_fast=False,
)
special_tokens_dict = dict()
if tokenizer.pad_token is None:
special_tokens_dict["pad_token"] = DEFAULT_PAD_TOKEN
if tokenizer.eos_token is None:
special_tokens_dict["eos_token"] = DEFAULT_EOS_TOKEN
if tokenizer.bos_token is None:
special_tokens_dict["bos_token"] = DEFAULT_BOS_TOKEN
if tokenizer.unk_token is None:
special_tokens_dict["unk_token"] = DEFAULT_UNK_TOKEN
smart_tokenizer_and_embedding_resize(
special_tokens_dict=special_tokens_dict,
tokenizer=tokenizer,
model=model,
)
trainable_params = os.path.join(args.peft_model, "trainable_params.bin")
if os.path.isfile(trainable_params):
model.load_state_dict(torch.load(trainable_params, map_location=model.device), strict=False)
model = PeftModel.from_pretrained(
model,
args.peft_model,
device_map="auto",
torch_dtype=torch.float16,
)
model = model.merge_and_unload()
model.save_pretrained(args.save_path)
tokenizer.save_pretrained(args.save_path)
if __name__ == "__main__":
args = parse_config()
main(args)