From 8a38978a1fdd373e337440ab6478eeb092000895 Mon Sep 17 00:00:00 2001
From: Arthur FINDELAIR <41486077+ArthurFDLR@users.noreply.github.com>
Date: Sun, 25 Jul 2021 16:19:53 -0500
Subject: [PATCH] =?UTF-8?q?=F0=9F=9A=80Add=20Google=20Colab=20link?=
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8
Content-Transfer-Encoding: 8bit
---
examples/hand_pose_classification.ipynb | 1648 ++++++++++++-----------
1 file changed, 863 insertions(+), 785 deletions(-)
diff --git a/examples/hand_pose_classification.ipynb b/examples/hand_pose_classification.ipynb
index 8a93757..fb5c4f9 100644
--- a/examples/hand_pose_classification.ipynb
+++ b/examples/hand_pose_classification.ipynb
@@ -1,817 +1,895 @@
{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "uMvrR9_jnDwO"
- },
- "source": [
- "# 🤙 Pose Classification Kit: Hand pose classification model creation"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "ONjOBMTanXiN"
- },
- "source": [
- "This Notebook can be used to create Neural Network classifiers running in the [Pose Classification Kit](https://github.com/ArthurFDLR/pose-classification-kit).\n",
- "\n",
- "First, we have to import several libraries to create and train a new model."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 4,
- "metadata": {
+ "nbformat": 4,
+ "nbformat_minor": 0,
+ "metadata": {
+ "accelerator": "GPU",
"colab": {
- "base_uri": "https://localhost:8080/"
+ "name": "OpenHand-Models.ipynb",
+ "provenance": [],
+ "toc_visible": true,
+ "include_colab_link": true
},
- "id": "0Xvt8oHFae-I",
- "outputId": "e4a71681-b3a0-4240-cdb7-0ac3710d36ae"
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Available GPU:\n",
- "GPU 0: GeForce RTX 2060 with Max-Q Design (UUID: GPU-63f90f3a-1a62-5290-ce48-ec73cce8a7ae)\n",
- "\n",
- "TensorFlow use GPU at: /device:GPU:0\n"
- ]
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.9"
}
- ],
- "source": [
- "import numpy as np\n",
- "import matplotlib.pyplot as plt\n",
- "import matplotlib.patches as mpatches\n",
- "from matplotlib.lines import Line2D\n",
- "import os\n",
- "\n",
- "try:\n",
- " import google.colab\n",
- " IN_COLAB = True\n",
- "except:\n",
- " IN_COLAB = False\n",
- "\n",
- "if IN_COLAB:\n",
- " %tensorflow_version 2.x\n",
- " !pip install pose-classification-kit\n",
- " \n",
- "import tensorflow\n",
- "from tensorflow import keras\n",
- "from pose_classification_kit.datasets import handDataset\n",
- "\n",
- "print('Available GPU:')\n",
- "!nvidia-smi -L\n",
- "print('\\nTensorFlow use GPU at: {}'.format(tensorflow.test.gpu_device_name()))"
- ]
},
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Import dataset"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 8,
- "metadata": {},
- "outputs": [
+ "cells": [
{
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Dataset loaded from https://raw.githubusercontent.com/ArthurFDLR/pose-classification-kit/master/pose_classification_kit/datasets/HandPose_Dataset.csv\n"
- ]
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "view-in-github",
+ "colab_type": "text"
+ },
+ "source": [
+ ""
+ ]
},
{
- "data": {
- "text/plain": [
- "((4347, 42), (4347, 27))"
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "uMvrR9_jnDwO"
+ },
+ "source": [
+ "# 🤙 Pose Classification Kit: Hand pose classification model creation"
]
- },
- "execution_count": 8,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "dataset = handDataset(testSplit=.2, shuffle=True, handID=1)\n",
- "x_train = dataset['x_train']\n",
- "y_train = dataset['y_train_onehot']\n",
- "labels = dataset['labels']\n",
- "\n",
- "x_train.shape, y_train.shape"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "xRWuVIAHae-P"
- },
- "source": [
- "## Models exploration\n",
- "\n",
- "This section is optional. The following blocks can be used to compare different model architecture and training processes."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 9,
- "metadata": {
- "id": "93-aeO7Sae-P"
- },
- "outputs": [],
- "source": [
- "model_train_history = {}\n",
- "input_dim = x_train.shape[1]\n",
- "validation_split = 0.20\n",
- "epochs = 15"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 11,
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/"
},
- "id": "PZ2p8pTDae-P",
- "outputId": "1c58cf17-9f5d-486f-bfe2-6b2f8935e109"
- },
- "outputs": [
{
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Model: \"ANN-3x16\"\n",
- "_________________________________________________________________\n",
- "Layer (type) Output Shape Param # \n",
- "=================================================================\n",
- "dense_7 (Dense) (None, 16) 688 \n",
- "_________________________________________________________________\n",
- "dense_8 (Dense) (None, 16) 272 \n",
- "_________________________________________________________________\n",
- "dense_9 (Dense) (None, 16) 272 \n",
- "_________________________________________________________________\n",
- "dense_10 (Dense) (None, 27) 459 \n",
- "=================================================================\n",
- "Total params: 1,691\n",
- "Trainable params: 1,691\n",
- "Non-trainable params: 0\n",
- "_________________________________________________________________\n",
- "Epoch 1/15\n",
- "870/870 [==============================] - 2s 3ms/step - loss: 1.9592 - accuracy: 0.4567 - val_loss: 0.7188 - val_accuracy: 0.8425\n",
- "Epoch 2/15\n",
- "870/870 [==============================] - 2s 2ms/step - loss: 0.4739 - accuracy: 0.8712 - val_loss: 0.3257 - val_accuracy: 0.9276\n",
- "Epoch 3/15\n",
- "870/870 [==============================] - 2s 2ms/step - loss: 0.2515 - accuracy: 0.9304 - val_loss: 0.2351 - val_accuracy: 0.9207\n",
- "Epoch 4/15\n",
- "870/870 [==============================] - 2s 2ms/step - loss: 0.1581 - accuracy: 0.9589 - val_loss: 0.1261 - val_accuracy: 0.9736\n",
- "Epoch 5/15\n",
- "870/870 [==============================] - 2s 3ms/step - loss: 0.1052 - accuracy: 0.9767 - val_loss: 0.0765 - val_accuracy: 0.9851\n",
- "Epoch 6/15\n",
- "870/870 [==============================] - 2s 2ms/step - loss: 0.0717 - accuracy: 0.9850 - val_loss: 0.0499 - val_accuracy: 0.9908\n",
- "Epoch 7/15\n",
- "870/870 [==============================] - 2s 2ms/step - loss: 0.0503 - accuracy: 0.9894 - val_loss: 0.0261 - val_accuracy: 0.9966\n",
- "Epoch 8/15\n",
- "870/870 [==============================] - 2s 2ms/step - loss: 0.0366 - accuracy: 0.9931 - val_loss: 0.0266 - val_accuracy: 0.9908\n",
- "Epoch 9/15\n",
- "870/870 [==============================] - 2s 2ms/step - loss: 0.0300 - accuracy: 0.9928 - val_loss: 0.0162 - val_accuracy: 0.9966\n",
- "Epoch 10/15\n",
- "870/870 [==============================] - 2s 2ms/step - loss: 0.0262 - accuracy: 0.9942 - val_loss: 0.0126 - val_accuracy: 0.9977\n",
- "Epoch 11/15\n",
- "870/870 [==============================] - 2s 2ms/step - loss: 0.0278 - accuracy: 0.9919 - val_loss: 0.0103 - val_accuracy: 0.9989\n",
- "Epoch 12/15\n",
- "870/870 [==============================] - 2s 2ms/step - loss: 0.0153 - accuracy: 0.9977 - val_loss: 0.0103 - val_accuracy: 1.0000\n",
- "Epoch 13/15\n",
- "870/870 [==============================] - 2s 3ms/step - loss: 0.0190 - accuracy: 0.9954 - val_loss: 0.0090 - val_accuracy: 0.9977\n",
- "Epoch 14/15\n",
- "870/870 [==============================] - 2s 3ms/step - loss: 0.0151 - accuracy: 0.9963 - val_loss: 0.0063 - val_accuracy: 0.9989\n",
- "Epoch 15/15\n",
- "870/870 [==============================] - 2s 3ms/step - loss: 0.0186 - accuracy: 0.9937 - val_loss: 0.0135 - val_accuracy: 0.9977\n"
- ]
- }
- ],
- "source": [
- "model = keras.models.Sequential(name = 'ANN-3x16',\n",
- " layers =\n",
- " [\n",
- " keras.layers.InputLayer(input_shape=input_dim),\n",
- " keras.layers.Dense(16, activation=keras.activations.relu),\n",
- " keras.layers.Dense(16, activation=keras.activations.relu),\n",
- " keras.layers.Dense(16, activation=keras.activations.relu),\n",
- " keras.layers.Dense(len(labels), activation=keras.activations.softmax),\n",
- " ]\n",
- ")\n",
- "\n",
- "model.summary()\n",
- "model.compile(\n",
- " optimizer=keras.optimizers.Adam(),\n",
- " loss='categorical_crossentropy',\n",
- " metrics=['accuracy'],\n",
- ")\n",
- "\n",
- "model_train_history[model] = model.fit(\n",
- " x=x_train,\n",
- " y=y_train,\n",
- " epochs=epochs,\n",
- " batch_size=4,\n",
- " validation_split=validation_split,\n",
- " shuffle=True,\n",
- " verbose=1,\n",
- ")"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 12,
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/"
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "ONjOBMTanXiN"
+ },
+ "source": [
+ "This Notebook can be used to create Neural Network classifiers running in the [Pose Classification Kit](https://github.com/ArthurFDLR/pose-classification-kit).\n",
+ "\n",
+ "First, we have to import several libraries to create and train a new model."
+ ]
},
- "id": "Ils0Rcv4ae-Q",
- "outputId": "64c77f7e-c6d3-4d74-d961-1d0f979c73c5"
- },
- "outputs": [
{
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Model: \"ANN-3x64\"\n",
- "_________________________________________________________________\n",
- "Layer (type) Output Shape Param # \n",
- "=================================================================\n",
- "dense_11 (Dense) (None, 64) 2752 \n",
- "_________________________________________________________________\n",
- "dense_12 (Dense) (None, 64) 4160 \n",
- "_________________________________________________________________\n",
- "dense_13 (Dense) (None, 64) 4160 \n",
- "_________________________________________________________________\n",
- "dense_14 (Dense) (None, 27) 1755 \n",
- "=================================================================\n",
- "Total params: 12,827\n",
- "Trainable params: 12,827\n",
- "Non-trainable params: 0\n",
- "_________________________________________________________________\n",
- "Epoch 1/15\n",
- "870/870 [==============================] - 2s 2ms/step - loss: 0.8996 - accuracy: 0.7662 - val_loss: 0.0885 - val_accuracy: 0.9862\n",
- "Epoch 2/15\n",
- "870/870 [==============================] - 3s 3ms/step - loss: 0.0773 - accuracy: 0.9779 - val_loss: 0.0456 - val_accuracy: 0.9828\n",
- "Epoch 3/15\n",
- "870/870 [==============================] - 2s 2ms/step - loss: 0.0361 - accuracy: 0.9885 - val_loss: 0.1093 - val_accuracy: 0.9655\n",
- "Epoch 4/15\n",
- "870/870 [==============================] - 2s 3ms/step - loss: 0.0294 - accuracy: 0.9925 - val_loss: 0.0247 - val_accuracy: 0.9908\n",
- "Epoch 5/15\n",
- "870/870 [==============================] - 2s 2ms/step - loss: 0.0161 - accuracy: 0.9960 - val_loss: 0.0034 - val_accuracy: 1.0000\n",
- "Epoch 6/15\n",
- "870/870 [==============================] - 2s 2ms/step - loss: 0.0175 - accuracy: 0.9960 - val_loss: 0.0184 - val_accuracy: 0.9931\n",
- "Epoch 7/15\n",
- "870/870 [==============================] - 2s 2ms/step - loss: 0.0132 - accuracy: 0.9965 - val_loss: 0.0286 - val_accuracy: 0.9897\n",
- "Epoch 8/15\n",
- "870/870 [==============================] - 2s 3ms/step - loss: 0.0096 - accuracy: 0.9971 - val_loss: 0.0052 - val_accuracy: 0.9989\n",
- "Epoch 9/15\n",
- "870/870 [==============================] - 2s 2ms/step - loss: 0.0102 - accuracy: 0.9974 - val_loss: 0.0023 - val_accuracy: 1.0000\n",
- "Epoch 10/15\n",
- "870/870 [==============================] - 2s 2ms/step - loss: 0.0109 - accuracy: 0.9977 - val_loss: 0.0013 - val_accuracy: 1.0000\n",
- "Epoch 11/15\n",
- "870/870 [==============================] - 2s 2ms/step - loss: 0.0126 - accuracy: 0.9948 - val_loss: 0.0015 - val_accuracy: 1.0000\n",
- "Epoch 12/15\n",
- "870/870 [==============================] - 2s 3ms/step - loss: 0.0047 - accuracy: 0.9988 - val_loss: 4.2082e-04 - val_accuracy: 1.0000\n",
- "Epoch 13/15\n",
- "870/870 [==============================] - 3s 3ms/step - loss: 0.0091 - accuracy: 0.9977 - val_loss: 2.6341e-04 - val_accuracy: 1.0000\n",
- "Epoch 14/15\n",
- "870/870 [==============================] - 2s 3ms/step - loss: 0.0126 - accuracy: 0.9971 - val_loss: 1.9235e-04 - val_accuracy: 1.0000\n",
- "Epoch 15/15\n",
- "870/870 [==============================] - 2s 3ms/step - loss: 0.0021 - accuracy: 0.9991 - val_loss: 2.9593e-04 - val_accuracy: 1.0000\n"
- ]
- }
- ],
- "source": [
- "model = keras.models.Sequential(name = 'ANN-3x64',\n",
- " layers =\n",
- " [\n",
- " keras.layers.InputLayer(input_shape=input_dim),\n",
- " keras.layers.Dense(64, activation=keras.activations.relu),\n",
- " keras.layers.Dense(64, activation=keras.activations.relu),\n",
- " keras.layers.Dense(64, activation=keras.activations.relu),\n",
- " keras.layers.Dense(len(labels), activation=keras.activations.softmax),\n",
- " ]\n",
- ")\n",
- "\n",
- "model.summary()\n",
- "model.compile(\n",
- " optimizer=keras.optimizers.Adam(),\n",
- " loss='categorical_crossentropy',\n",
- " metrics=['accuracy'],\n",
- ")\n",
- "\n",
- "model_train_history[model] = model.fit(\n",
- " x=x_train,\n",
- " y=y_train,\n",
- " epochs=epochs,\n",
- " batch_size=4,\n",
- " validation_split=validation_split,\n",
- " shuffle=True,\n",
- " verbose=1,\n",
- ")"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 13,
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/"
+ "cell_type": "code",
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "0Xvt8oHFae-I",
+ "outputId": "aadcc080-4d96-41f0-b09a-e1c506e68475"
+ },
+ "source": [
+ "import numpy as np\n",
+ "import matplotlib.pyplot as plt\n",
+ "import matplotlib.patches as mpatches\n",
+ "from matplotlib.lines import Line2D\n",
+ "import os\n",
+ "\n",
+ "try:\n",
+ " import google.colab\n",
+ " IN_COLAB = True\n",
+ "except:\n",
+ " IN_COLAB = False\n",
+ "\n",
+ "if IN_COLAB:\n",
+ " %tensorflow_version 2.x\n",
+ " !pip install pose-classification-kit\n",
+ " \n",
+ "import tensorflow\n",
+ "from tensorflow import keras\n",
+ "from pose_classification_kit.datasets import handDataset\n",
+ "\n",
+ "print('Available GPU:')\n",
+ "!nvidia-smi -L\n",
+ "print('\\nTensorFlow use GPU at: {}'.format(tensorflow.test.gpu_device_name()))"
+ ],
+ "execution_count": 1,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "text": [
+ "Collecting pose-classification-kit\n",
+ " Downloading pose_classification_kit-1.1.5-py3-none-any.whl (24.2 MB)\n",
+ "\u001b[K |████████████████████████████████| 24.2 MB 23 kB/s \n",
+ "\u001b[?25hRequirement already satisfied: pandas<2.0.0,>=1.1.5 in /usr/local/lib/python3.7/dist-packages (from pose-classification-kit) (1.1.5)\n",
+ "Requirement already satisfied: tensorflow in /usr/local/lib/python3.7/dist-packages (from pose-classification-kit) (2.5.0)\n",
+ "Requirement already satisfied: numpy<1.20.0,>=1.19.2 in /usr/local/lib/python3.7/dist-packages (from pose-classification-kit) (1.19.5)\n",
+ "Requirement already satisfied: pytz>=2017.2 in /usr/local/lib/python3.7/dist-packages (from pandas<2.0.0,>=1.1.5->pose-classification-kit) (2018.9)\n",
+ "Requirement already satisfied: python-dateutil>=2.7.3 in /usr/local/lib/python3.7/dist-packages (from pandas<2.0.0,>=1.1.5->pose-classification-kit) (2.8.1)\n",
+ "Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.7/dist-packages (from python-dateutil>=2.7.3->pandas<2.0.0,>=1.1.5->pose-classification-kit) (1.15.0)\n",
+ "Requirement already satisfied: h5py~=3.1.0 in /usr/local/lib/python3.7/dist-packages (from tensorflow->pose-classification-kit) (3.1.0)\n",
+ "Requirement already satisfied: flatbuffers~=1.12.0 in /usr/local/lib/python3.7/dist-packages (from tensorflow->pose-classification-kit) (1.12)\n",
+ "Requirement already satisfied: gast==0.4.0 in /usr/local/lib/python3.7/dist-packages (from tensorflow->pose-classification-kit) (0.4.0)\n",
+ "Requirement already satisfied: termcolor~=1.1.0 in /usr/local/lib/python3.7/dist-packages (from tensorflow->pose-classification-kit) (1.1.0)\n",
+ "Requirement already satisfied: keras-preprocessing~=1.1.2 in /usr/local/lib/python3.7/dist-packages (from tensorflow->pose-classification-kit) (1.1.2)\n",
+ "Requirement already satisfied: grpcio~=1.34.0 in /usr/local/lib/python3.7/dist-packages (from tensorflow->pose-classification-kit) (1.34.1)\n",
+ "Requirement already satisfied: wheel~=0.35 in /usr/local/lib/python3.7/dist-packages (from tensorflow->pose-classification-kit) (0.36.2)\n",
+ "Requirement already satisfied: absl-py~=0.10 in /usr/local/lib/python3.7/dist-packages (from tensorflow->pose-classification-kit) (0.12.0)\n",
+ "Requirement already satisfied: astunparse~=1.6.3 in /usr/local/lib/python3.7/dist-packages (from tensorflow->pose-classification-kit) (1.6.3)\n",
+ "Requirement already satisfied: google-pasta~=0.2 in /usr/local/lib/python3.7/dist-packages (from tensorflow->pose-classification-kit) (0.2.0)\n",
+ "Requirement already satisfied: keras-nightly~=2.5.0.dev in /usr/local/lib/python3.7/dist-packages (from tensorflow->pose-classification-kit) (2.5.0.dev2021032900)\n",
+ "Requirement already satisfied: tensorflow-estimator<2.6.0,>=2.5.0rc0 in /usr/local/lib/python3.7/dist-packages (from tensorflow->pose-classification-kit) (2.5.0)\n",
+ "Requirement already satisfied: tensorboard~=2.5 in /usr/local/lib/python3.7/dist-packages (from tensorflow->pose-classification-kit) (2.5.0)\n",
+ "Requirement already satisfied: wrapt~=1.12.1 in /usr/local/lib/python3.7/dist-packages (from tensorflow->pose-classification-kit) (1.12.1)\n",
+ "Requirement already satisfied: opt-einsum~=3.3.0 in /usr/local/lib/python3.7/dist-packages (from tensorflow->pose-classification-kit) (3.3.0)\n",
+ "Requirement already satisfied: protobuf>=3.9.2 in /usr/local/lib/python3.7/dist-packages (from tensorflow->pose-classification-kit) (3.17.3)\n",
+ "Requirement already satisfied: typing-extensions~=3.7.4 in /usr/local/lib/python3.7/dist-packages (from tensorflow->pose-classification-kit) (3.7.4.3)\n",
+ "Requirement already satisfied: cached-property in /usr/local/lib/python3.7/dist-packages (from h5py~=3.1.0->tensorflow->pose-classification-kit) (1.5.2)\n",
+ "Requirement already satisfied: werkzeug>=0.11.15 in /usr/local/lib/python3.7/dist-packages (from tensorboard~=2.5->tensorflow->pose-classification-kit) (1.0.1)\n",
+ "Requirement already satisfied: google-auth<2,>=1.6.3 in /usr/local/lib/python3.7/dist-packages (from tensorboard~=2.5->tensorflow->pose-classification-kit) (1.32.1)\n",
+ "Requirement already satisfied: tensorboard-data-server<0.7.0,>=0.6.0 in /usr/local/lib/python3.7/dist-packages (from tensorboard~=2.5->tensorflow->pose-classification-kit) (0.6.1)\n",
+ "Requirement already satisfied: markdown>=2.6.8 in /usr/local/lib/python3.7/dist-packages (from tensorboard~=2.5->tensorflow->pose-classification-kit) (3.3.4)\n",
+ "Requirement already satisfied: google-auth-oauthlib<0.5,>=0.4.1 in /usr/local/lib/python3.7/dist-packages (from tensorboard~=2.5->tensorflow->pose-classification-kit) (0.4.4)\n",
+ "Requirement already satisfied: tensorboard-plugin-wit>=1.6.0 in /usr/local/lib/python3.7/dist-packages (from tensorboard~=2.5->tensorflow->pose-classification-kit) (1.8.0)\n",
+ "Requirement already satisfied: requests<3,>=2.21.0 in /usr/local/lib/python3.7/dist-packages (from tensorboard~=2.5->tensorflow->pose-classification-kit) (2.23.0)\n",
+ "Requirement already satisfied: setuptools>=41.0.0 in /usr/local/lib/python3.7/dist-packages (from tensorboard~=2.5->tensorflow->pose-classification-kit) (57.2.0)\n",
+ "Requirement already satisfied: cachetools<5.0,>=2.0.0 in /usr/local/lib/python3.7/dist-packages (from google-auth<2,>=1.6.3->tensorboard~=2.5->tensorflow->pose-classification-kit) (4.2.2)\n",
+ "Requirement already satisfied: pyasn1-modules>=0.2.1 in /usr/local/lib/python3.7/dist-packages (from google-auth<2,>=1.6.3->tensorboard~=2.5->tensorflow->pose-classification-kit) (0.2.8)\n",
+ "Requirement already satisfied: rsa<5,>=3.1.4 in /usr/local/lib/python3.7/dist-packages (from google-auth<2,>=1.6.3->tensorboard~=2.5->tensorflow->pose-classification-kit) (4.7.2)\n",
+ "Requirement already satisfied: requests-oauthlib>=0.7.0 in /usr/local/lib/python3.7/dist-packages (from google-auth-oauthlib<0.5,>=0.4.1->tensorboard~=2.5->tensorflow->pose-classification-kit) (1.3.0)\n",
+ "Requirement already satisfied: importlib-metadata in /usr/local/lib/python3.7/dist-packages (from markdown>=2.6.8->tensorboard~=2.5->tensorflow->pose-classification-kit) (4.6.1)\n",
+ "Requirement already satisfied: pyasn1<0.5.0,>=0.4.6 in /usr/local/lib/python3.7/dist-packages (from pyasn1-modules>=0.2.1->google-auth<2,>=1.6.3->tensorboard~=2.5->tensorflow->pose-classification-kit) (0.4.8)\n",
+ "Requirement already satisfied: chardet<4,>=3.0.2 in /usr/local/lib/python3.7/dist-packages (from requests<3,>=2.21.0->tensorboard~=2.5->tensorflow->pose-classification-kit) (3.0.4)\n",
+ "Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /usr/local/lib/python3.7/dist-packages (from requests<3,>=2.21.0->tensorboard~=2.5->tensorflow->pose-classification-kit) (1.24.3)\n",
+ "Requirement already satisfied: idna<3,>=2.5 in /usr/local/lib/python3.7/dist-packages (from requests<3,>=2.21.0->tensorboard~=2.5->tensorflow->pose-classification-kit) (2.10)\n",
+ "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.7/dist-packages (from requests<3,>=2.21.0->tensorboard~=2.5->tensorflow->pose-classification-kit) (2021.5.30)\n",
+ "Requirement already satisfied: oauthlib>=3.0.0 in /usr/local/lib/python3.7/dist-packages (from requests-oauthlib>=0.7.0->google-auth-oauthlib<0.5,>=0.4.1->tensorboard~=2.5->tensorflow->pose-classification-kit) (3.1.1)\n",
+ "Requirement already satisfied: zipp>=0.5 in /usr/local/lib/python3.7/dist-packages (from importlib-metadata->markdown>=2.6.8->tensorboard~=2.5->tensorflow->pose-classification-kit) (3.5.0)\n",
+ "Installing collected packages: pose-classification-kit\n",
+ "Successfully installed pose-classification-kit-1.1.5\n",
+ "1 Physical GPUs, 1 Logical GPUs\n",
+ "Available GPU:\n",
+ "GPU 0: Tesla T4 (UUID: GPU-65bbdbe4-42ed-f007-b0cb-f5b30cba9c3f)\n",
+ "\n",
+ "TensorFlow use GPU at: /device:GPU:0\n"
+ ],
+ "name": "stdout"
+ }
+ ]
},
- "id": "lUaetVfOae-Q",
- "outputId": "197b3a7f-8dd7-4e0b-c374-f4e2f2dbcbf6"
- },
- "outputs": [
{
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Model: \"ANN-3x64-Dropouts\"\n",
- "_________________________________________________________________\n",
- "Layer (type) Output Shape Param # \n",
- "=================================================================\n",
- "dense_15 (Dense) (None, 64) 2752 \n",
- "_________________________________________________________________\n",
- "dropout (Dropout) (None, 64) 0 \n",
- "_________________________________________________________________\n",
- "dense_16 (Dense) (None, 64) 4160 \n",
- "_________________________________________________________________\n",
- "dropout_1 (Dropout) (None, 64) 0 \n",
- "_________________________________________________________________\n",
- "dense_17 (Dense) (None, 64) 4160 \n",
- "_________________________________________________________________\n",
- "dropout_2 (Dropout) (None, 64) 0 \n",
- "_________________________________________________________________\n",
- "dense_18 (Dense) (None, 27) 1755 \n",
- "=================================================================\n",
- "Total params: 12,827\n",
- "Trainable params: 12,827\n",
- "Non-trainable params: 0\n",
- "_________________________________________________________________\n",
- "Epoch 1/15\n",
- "870/870 [==============================] - 2s 3ms/step - loss: 1.9930 - accuracy: 0.3888 - val_loss: 0.5271 - val_accuracy: 0.8874\n",
- "Epoch 2/15\n",
- "870/870 [==============================] - 2s 3ms/step - loss: 0.7371 - accuracy: 0.7397 - val_loss: 0.1629 - val_accuracy: 0.9828\n",
- "Epoch 3/15\n",
- "870/870 [==============================] - 2s 3ms/step - loss: 0.4313 - accuracy: 0.8513 - val_loss: 0.0708 - val_accuracy: 0.9908\n",
- "Epoch 4/15\n",
- "870/870 [==============================] - 2s 3ms/step - loss: 0.3245 - accuracy: 0.8884 - val_loss: 0.0536 - val_accuracy: 0.9920\n",
- "Epoch 5/15\n",
- "870/870 [==============================] - 2s 3ms/step - loss: 0.2590 - accuracy: 0.9065 - val_loss: 0.0292 - val_accuracy: 0.9954\n",
- "Epoch 6/15\n",
- "870/870 [==============================] - 2s 3ms/step - loss: 0.1947 - accuracy: 0.9298 - val_loss: 0.0196 - val_accuracy: 0.9966\n",
- "Epoch 7/15\n",
- "870/870 [==============================] - 2s 3ms/step - loss: 0.1741 - accuracy: 0.9416 - val_loss: 0.0161 - val_accuracy: 0.9954\n",
- "Epoch 8/15\n",
- "870/870 [==============================] - 2s 3ms/step - loss: 0.1483 - accuracy: 0.9497 - val_loss: 0.0100 - val_accuracy: 0.9977\n",
- "Epoch 9/15\n",
- "870/870 [==============================] - 2s 3ms/step - loss: 0.1455 - accuracy: 0.9548 - val_loss: 0.0067 - val_accuracy: 1.0000\n",
- "Epoch 10/15\n",
- "870/870 [==============================] - 2s 3ms/step - loss: 0.1100 - accuracy: 0.9681 - val_loss: 0.0063 - val_accuracy: 0.9977\n",
- "Epoch 11/15\n",
- "870/870 [==============================] - 2s 3ms/step - loss: 0.1179 - accuracy: 0.9632 - val_loss: 0.0090 - val_accuracy: 0.9966\n",
- "Epoch 12/15\n",
- "870/870 [==============================] - 2s 3ms/step - loss: 0.1075 - accuracy: 0.9632 - val_loss: 0.0056 - val_accuracy: 0.9989\n",
- "Epoch 13/15\n",
- "870/870 [==============================] - 2s 3ms/step - loss: 0.0918 - accuracy: 0.9721 - val_loss: 0.0035 - val_accuracy: 1.0000\n",
- "Epoch 14/15\n",
- "870/870 [==============================] - 2s 3ms/step - loss: 0.0856 - accuracy: 0.9735 - val_loss: 0.0271 - val_accuracy: 0.9931\n",
- "Epoch 15/15\n",
- "870/870 [==============================] - 2s 3ms/step - loss: 0.0780 - accuracy: 0.9756 - val_loss: 0.0095 - val_accuracy: 0.9966\n"
- ]
- }
- ],
- "source": [
- "model = keras.models.Sequential(name = 'ANN-3x64-Dropouts',\n",
- " layers =\n",
- " [\n",
- " keras.layers.InputLayer(input_shape=input_dim),\n",
- " keras.layers.Dense(64, activation=keras.activations.relu),\n",
- " keras.layers.Dropout(0.3),\n",
- " keras.layers.Dense(64, activation=keras.activations.relu),\n",
- " keras.layers.Dropout(0.3),\n",
- " keras.layers.Dense(64, activation=keras.activations.relu),\n",
- " keras.layers.Dropout(0.3),\n",
- " keras.layers.Dense(len(labels), activation=keras.activations.softmax),\n",
- " ]\n",
- ")\n",
- "\n",
- "model.summary()\n",
- "model.compile(\n",
- " optimizer=keras.optimizers.Adam(),\n",
- " loss='categorical_crossentropy',\n",
- " metrics=['accuracy'],\n",
- ")\n",
- "\n",
- "model_train_history[model] = model.fit(\n",
- " x=x_train,\n",
- " y=y_train,\n",
- " epochs=epochs,\n",
- " batch_size=4,\n",
- " validation_split=validation_split,\n",
- " shuffle=True,\n",
- " verbose=1,\n",
- ")"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 14,
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/"
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "JSmWOsSRg8i5"
+ },
+ "source": [
+ "## Import dataset"
+ ]
},
- "id": "FA1LSFoVae-R",
- "outputId": "fb01face-dfb0-4bc5-f45d-7f96bf0e1b46"
- },
- "outputs": [
{
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Model: \"ANN-2x128\"\n",
- "_________________________________________________________________\n",
- "Layer (type) Output Shape Param # \n",
- "=================================================================\n",
- "dense_19 (Dense) (None, 128) 5504 \n",
- "_________________________________________________________________\n",
- "dense_20 (Dense) (None, 128) 16512 \n",
- "_________________________________________________________________\n",
- "dense_21 (Dense) (None, 27) 3483 \n",
- "=================================================================\n",
- "Total params: 25,499\n",
- "Trainable params: 25,499\n",
- "Non-trainable params: 0\n",
- "_________________________________________________________________\n",
- "Epoch 1/15\n",
- "870/870 [==============================] - 2s 3ms/step - loss: 0.7411 - accuracy: 0.8277 - val_loss: 0.0596 - val_accuracy: 0.9931\n",
- "Epoch 2/15\n",
- "870/870 [==============================] - 2s 2ms/step - loss: 0.0452 - accuracy: 0.9914 - val_loss: 0.0435 - val_accuracy: 0.9828\n",
- "Epoch 3/15\n",
- "870/870 [==============================] - 2s 2ms/step - loss: 0.0196 - accuracy: 0.9960 - val_loss: 0.0077 - val_accuracy: 1.0000\n",
- "Epoch 4/15\n",
- "870/870 [==============================] - 2s 2ms/step - loss: 0.0100 - accuracy: 0.9974 - val_loss: 0.0080 - val_accuracy: 1.0000\n",
- "Epoch 5/15\n",
- "870/870 [==============================] - 2s 2ms/step - loss: 0.0085 - accuracy: 0.9991 - val_loss: 0.0021 - val_accuracy: 1.0000\n",
- "Epoch 6/15\n",
- "870/870 [==============================] - 2s 2ms/step - loss: 0.0047 - accuracy: 0.9991 - val_loss: 0.0028 - val_accuracy: 0.9989\n",
- "Epoch 7/15\n",
- "870/870 [==============================] - 2s 2ms/step - loss: 0.0028 - accuracy: 0.9997 - val_loss: 0.0012 - val_accuracy: 1.0000\n",
- "Epoch 8/15\n",
- "870/870 [==============================] - 2s 3ms/step - loss: 0.0047 - accuracy: 0.9986 - val_loss: 0.0011 - val_accuracy: 1.0000\n",
- "Epoch 9/15\n",
- "870/870 [==============================] - 2s 3ms/step - loss: 0.0037 - accuracy: 0.9994 - val_loss: 0.0019 - val_accuracy: 1.0000\n",
- "Epoch 10/15\n",
- "870/870 [==============================] - 2s 3ms/step - loss: 0.0014 - accuracy: 0.9994 - val_loss: 0.0024 - val_accuracy: 1.0000\n",
- "Epoch 11/15\n",
- "870/870 [==============================] - 2s 3ms/step - loss: 0.0084 - accuracy: 0.9980 - val_loss: 0.4499 - val_accuracy: 0.9563\n",
- "Epoch 12/15\n",
- "870/870 [==============================] - 2s 2ms/step - loss: 0.0198 - accuracy: 0.9963 - val_loss: 6.7393e-04 - val_accuracy: 1.0000\n",
- "Epoch 13/15\n",
- "870/870 [==============================] - 2s 2ms/step - loss: 5.4952e-04 - accuracy: 1.0000 - val_loss: 4.7648e-04 - val_accuracy: 1.0000\n",
- "Epoch 14/15\n",
- "870/870 [==============================] - 3s 3ms/step - loss: 0.0025 - accuracy: 0.9994 - val_loss: 0.0044 - val_accuracy: 0.9989\n",
- "Epoch 15/15\n",
- "870/870 [==============================] - 2s 2ms/step - loss: 0.0043 - accuracy: 0.9991 - val_loss: 7.2220e-04 - val_accuracy: 1.0000\n"
- ]
- }
- ],
- "source": [
- "model = keras.models.Sequential(name = 'ANN-2x128',\n",
- " layers =\n",
- " [\n",
- " keras.layers.InputLayer(input_shape=input_dim),\n",
- " keras.layers.Dense(128, activation=keras.activations.relu),\n",
- " keras.layers.Dense(128, activation=keras.activations.relu),\n",
- " keras.layers.Dense(len(labels), activation=keras.activations.softmax),\n",
- " ]\n",
- ")\n",
- "\n",
- "model.summary()\n",
- "model.compile(\n",
- " optimizer=keras.optimizers.Adam(),\n",
- " loss='categorical_crossentropy',\n",
- " metrics=['accuracy'],\n",
- ")\n",
- "\n",
- "model_train_history[model] = model.fit(\n",
- " x=x_train,\n",
- " y=y_train,\n",
- " epochs=epochs,\n",
- " batch_size=4,\n",
- " validation_split=validation_split,\n",
- " shuffle=True,\n",
- " verbose=1,\n",
- ")"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 15,
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 355
+ "cell_type": "code",
+ "metadata": {
+ "id": "_v5VYGMCg8i6",
+ "outputId": "15208251-c9aa-403c-ba55-3529a3e6dc7e",
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ }
+ },
+ "source": [
+ "dataset = handDataset(testSplit=.2, shuffle=True, handID=1)\n",
+ "x_train = dataset['x_train']\n",
+ "y_train = dataset['y_train_onehot']\n",
+ "labels = dataset['labels']\n",
+ "\n",
+ "x_train.shape, y_train.shape"
+ ],
+ "execution_count": 2,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ "((4347, 42), (4347, 27))"
+ ]
+ },
+ "metadata": {
+ "tags": []
+ },
+ "execution_count": 2
+ }
+ ]
},
- "id": "4UhLcq1Jae-R",
- "outputId": "91bd3127-5407-4d3c-82dc-37dad2977465"
- },
- "outputs": [
{
- "data": {
- "text/plain": [
- ""
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "xRWuVIAHae-P"
+ },
+ "source": [
+ "## Models exploration\n",
+ "\n",
+ "This section is optional. The following blocks can be used to compare different model architecture and training processes."
]
- },
- "execution_count": 15,
- "metadata": {},
- "output_type": "execute_result"
},
{
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6QAAAFBCAYAAABgqWLFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdd3hU15n48e+5906v6r0L0XsxxsbGuIEd95reHCebbPqW7P6y6dmSnqyTOI7tJE42TtziEndwwcYG04vooI56HWn63PP7Y4QAI4EEEhL4fJ6HBzRzy5lhNPe+p7yvkFKiKIqiKIqiKIqiKGebNt4NUBRFURRFURRFUd6bVECqKIqiKIqiKIqijAsVkCqKoiiKoiiKoijjQgWkiqIoiqIoiqIoyrhQAamiKIqiKIqiKIoyLlRAqiiKoiiKoiiKoowLFZAqiqIoE44Q4kEhRIsQYucQzwshxC+EEAeEENuFEPOOee4FIUSXEOLvZ6/FiqIoiqKcDhWQKoqiKBPR74EVJ3l+JTCp/8/dwK+Pee6HwIfHrGWKoiiKoowaFZAqiqIoE46Ucg3QcZJNbgAekknrAL8QIqd/39VA4Cw0U1EURVGUM6QCUkVRFOVclAfUHfNzff9jiqIoiqKcQ4zxbsBYSE9Pl8XFxePdDEVRlAlv06ZNbVLKjPFux3gQQtxNcrovLpdr/pQpU8a5RYqiKOeG9/K1Qxl951VAKoS4DriuvLycjRs3jndzFEVRJjwhRM14t+E0NQAFx/yc3//YsEkp7wPuA1iwYIFU1w1FUZThOYevHcoEdF5N2ZVSPiOlvNvn8413UxRFUZSx9TTwkf5su4uBbill43g3SlEURVGUkTmvRkgVRVGU84MQ4mFgGZAuhKgHvglYAKSU9wLPAdcAB4Ag8PFj9n0DmAK4+/f9pJTyxbP6AhRFURRFGRYVkCqKoigTjpTy/ad4XgKfG+K5pWPSKEVRFEVRRt15NWVXURRFURRFURRFOXeogFRRFEVRFEVRFEUZFyogVRRFURRFURRFUcaFCkgVRVEURVEURVGUcaECUkVRFEVRFEVRFGVcqIBUURRFURRFURRFGRcqIH0XUybGuwmKoiiKoiiKoijvCedVQCqEuE4IcV93d/dp7V/buYtHtn6fYCwwyi1TFEVRFEVRFEVR3u28CkillM9IKe/2+Xynt3/zVro6dvHSvgeJm7FRbp2iKIqiKIqiKIpyrPMqID1TBWU3Ml/PoLF9G2/VP4eUcrybpCiKoiiKoiiKct5SAekxNIuTKWW3Uh6V7G1+k11t74x3kxRFURRFURRFUc5bKiB9F3feRUx3lpIeDLD+8EscDlSNd5MURVEURVEURVHOSyogfRehGaRU3MKcmIYzFuXV2sfpiXSOd7MURVEURVEURVHOOyogHYQjfRrutBnMDfRhJmKsqv4rsUR0vJulKIqiKIqiKIpyXlEB6RD8k27GmYizQPgJRLtoDTaMd5MURVEURVEURVHOKyogHYLFnY07/2Lczbu5peTD5HpKxrtJiqIoiqIoiqIo5xVjvBswkXlLr8GROQe7Ow+Ag507MTQLRb7J49wyRVEURVEURVGUc58KSE9Ct7rRUysASCSiVLatx264KPRWIIQY59YpiqIoiqIoiqKc21RAOgw91asINm3gynmfw2q4VDCqKIqiKIqiKIoyCtQa0mGwuLKx+kqwaVZ0TSccD7Kx8RVMmRjvpimKoiiKoiiKopyz1AjpMDgyZuDImDHwc33gINta1mLKBItyrxzHlimKoiiKoiiKopy7VEA6ApHuKqI9tZQXXEprsIEdretIdWRRnjJrvJumKIqiKIqiKIpyzpnwAakQwgX8CogCr0kp/2+82tJ3eD19h9/GnjqFRTlX0hlu4c36v+OzpZPhzB2vZimKoiiKoiiKopyTxmUNqRDiQSFEixBi57seXyGE2CuEOCCE+Fr/wzcDj0kpPwVcf9Ybewxf2bUIzUrX/r+hazrLi27FabhZXf0IwVjveDZNURRFURRFURTlnDNeSY1+D6w49gEhhA78ElgJTAPeL4SYBuQDdf2bjWsWId3qwVtyNeG2nYTb92A3nFxefDuRRJhXah4lYcbHs3mKoiiKoiiKoijnlHEJSKWUa4COdz28CDggpTwkpYwCfwFuAOpJBqUwAbICewovxXCk07XvCaSZIM2RzSUF19PcV89bDc8jpRzvJiqKoiiKoiiKopwTxj3AO0YeR0dCIRmI5gFPALcIIX4NPDPUzkKIu4UQG4UQG1tbW8eskUKz4Cu/kVjfYfoOvwVAiX8aczIvZl/HVmp69o7ZuRVFURRFURRFUc4nEz6pkZSyD/j4MLa7D7gPYMGCBWM6TOnInI3NP4nug8/izJqPZnEyL3sZHpufQu+ksTy1oiiKoiiKoijKeWMijZA2AAXH/Jzf/9hZ09GSoPZA7JTbCSHwT74FM9ZHT9WLA49VpM5FEzrBWIDeaPdYN1dRFEVRFEVRFOWcNpEC0g3AJCFEiRDCCtwJPD2SAwghrhNC3NfdfXrBYEN1jJ0bwsRjpx5gtXryceUuJti0EZk4GsRKKXnh0P/xWu0Taj2poiiKoiiKoijKSYxX2ZeHgbeByUKIeiHEJ6WUceAfgReB3cAjUsrKkRxXSvmMlPJun893Wu3KKTRIJKC1cXjZcn3lN5B94f9D6JaBx4QQLM69miV51yCEOK12KIqiKIqiKIqivBeMyxpSKeX7h3j8OeC5s9ycAamZOjaboLE2Tk6h5ZTb61Y3AFKamNEAui0ZCOd6Sga2aQ81kebIHpsGK4qiKIqiKIqinMMm0pTdM3amU3Y1TZBdaNBcHycRH/502/Zt99O65ddIaR73+P6ObTy1/35qe/afVnsURVEURVEURVHOZ+dVQHqmU3bDjVVk6l3E49DamBj2fq68JXhLrgKOn6Jb4p9Gmj2L12v/poJSRVEURVEURVGUdzmvAtIzIRMxmh56iMgzT2PoUQ7Xnjrb7hGOjBk4s+adsGbU0CxcUXwHbquPl6v+wpq6p4jEQ6PddEVRFEVRFEVRlHPSeRWQnsmUXaFb8F+4HIJxXK2P01QTIpEY/rRdKSU91S8NlIE5wmX1cn35XczNWsrBzh08se9eanv2jbh9iqIoiqIoiqIo55vzKiA90ym73vmLsafPIKWvlkDDVpqrO4a9rxCCWG8TPYdeIB5qP+45XdOZl72M68o/id1w8nLVX3m99knC8eBptVNRFEVRFEVRFOV8cF4FpGdKc1mwFeWSnbUSu1ZFw9r/IhZsHfb+vvLrQEDX/qcGfT7dmTMwWnqoq5J1h18cdDtFUZT3OiHEg0KIFiHEziGeF0KIXwghDgghtgsh5h3z3EeFEPv7/3z07LVaURRFUZSRUgHpu1iLPWi9Pq64dTZe8Sa1z3+CWF/TsPY17Cl4iq8k1LKZSNfBQbc5Mlp6/aRPsiB7OQDBWECNliqKohzv98CKkzy/EpjU/+du4NcAQohU4JvABcAi4JtCiJQxbamiKIqiKKdtXOqQjhUhxHXAdeXl5ad9DEuxh9A7LRjhcvKuuJeal79CzfOfoGjFA1jcOafc31N0BX0Nb9O193EyF/3zCYmOjji2Numb9c/SHWnj5op/QNf00267oijK+UJKuUYIUXySTW4AHpJSSmCdEMIvhMgBlgEvSyk7AIQQL5MMbB8e4yafE4LrW0h0Rca7GcPS05HAWejCO9uP7j51bfDxEm8LE93fTaInOt5NOaVo2KS+rYlwNIJX5CEY/B7ldEhNEC5PR9om8K2lhES4A/1QHbawc6Ce/JkyiROMtyKCYexpZcSzvST8jlE59qhLmFja+rA0Bci+Lhd/wQRtp/KeMoG/NUZOSvkM8MyCBQs+dbrHMDIdCLtBtDrAhvAkPDn3Y7R8mJrnP07higewevJOur+mW/GVX0dH5UMEG9/BlXvBKc+5IPsyuiPt6JqOlJKoGcGm20/3JSiKorwX5AF1x/xc3//YUI+fQAhxN8nRVQoLC8emlRNIrDFI5327x7sZIxLs/2PkubBN8mGt8GGr8KGn2MalPVJK4k0hovu6iOzrJrqvm0THuRHgH5E+8K/6UT921e4YB93pp95wPEk71zdFMWQE6By1wyazlxhADSbQanPTZnVhmAnCumXgffHFQpgIIppBVNNhiIGL0aKbJqmxIOmRPtKjfaRGg+gkk3b2lLlVQKpMCOdVQHqmTGkiMbEUuonV9lJ6SSZOdyGeub+l9sW7qXn+4xSteACrt+Ckx3FmL6S3bg3dB57GkTkHzTj5hTPVkUWqIwuAA53b2dC4iiX511Dsmzpqr01RFEU5npTyPuA+gAULFgw/rfo5KrIzmagv87sLxi2gG65Vf+ujem8UdyjMzOwIOSJI8O1m+l47DICeae8PUP3JADXDPuSMpDMhTUmsppfwjnai+7qJVgeQoWSdcmHT0HxWfB8ow1bhJ7K7k3hXFO91Rcl9EyZCP3sroySSrnaTxpo4TbVxDtfG6e2JE0rbTqDoOSLuWpyksjD9OjL8ft48/BRNwWp8tgwuyrmeuZnLMLTTHImW0P61dSxeqHPFLeM3Q95MRAm37ybUso1g8xbCbTswY70AWFw5ODLn4PDOI/ZrH+LCDrqMB0lEu3FmzCZl6gdwZM8f9HPUG+2iNrCH6sAeart30xKqRSLRMZjbfQFTDkzF4fGwpWgTkYZuLoldQ26rSdbh5uQBNMGCzCCWST5i1T2AQOgCNIHmMhAeK5rHgua2JP9Os2NkOU/vPQjGiB3sIba/m9iBbuK1vWBKEGAUuLGU52Ip92Ep92H1T9yZB8p7iwpI+yXMOA9s/y7ZrkKuLr6F6P5u8jMkRqoBTKNoxf0DQWnhivux+YqHPJYQAn/FzbRs/AmBmlX4yq4ddjvSHNm4LF5WVz9GiX8aF+atwGG4zvwFKoqinF8agGN7B/P7H2sgOW332MdfO2utmsDClZ0Y2Q4suRP7mtLWFGfv7gQLLnERCTt57Z0IN328iLwig1hdL9F93UT2dRHe1k5wbfKGX/NbsVX4sE7yYavwY+Q6EdrIAtRER4RoTQ+ay0L0QA+hDa3EGvqgvwScsGoIl4GeZkfPsGOk29F9VlyX5iIMjURnBOGyoDmSt1Zd/7cfTDDynFjyXBh5rlGdemyakvamBA01cQ5XxzhcEyfUl2yrw22iT95Eu+9peuOHKUyUcZHjM5SaU5DVMcy+OJPzvkLt/MOsrn6E9r9X8lT6Rgoum80FeVcT/L/aU57fNsmH88JkZ3rnQ/vQXAb0RLBYgZiJsI79EiQzFiTUup1g8yaCTZsJtW5HJpIj1lZfKanly3BmzcOZNR+LO7lUKlrbSyubSJl7MdmzV9C193Had/6e5rc/jT19BmmzPkUsYypV3bs41FXJoa5K2kLJjhCrbqfIO5nLCm6l1D2d9C0e4k0BLNM8uK/OJ12bxo/e+Twt9i4+P/8HEJRE9ydH0iP7uwm+WAsmIEDPdGBkOBAaaPEEsilKrDcOSKxlXpyFyY6Nrv/bj7XCh3NhJjIh6V1Vj2bTEf1/ZCxBvCVMrKGPeF0v8eYQSMAQWEs8uFcWJDtvyr0Dn01FmWjUJ7OfrhmkO3J4o+5pps1cSOnd09FsOr09Jn09Jln5UyhccT+1L36K2uc/mQxK/SVDHs/mL8WZNZ9ooB4p5bB7blMdWbyv/BPsaH2brc1raOqt5sK8lZT4p43WS1UURTkfPA38oxDiLyQTGHVLKRuFEC8C/3lMIqOrgH8br0ZOFDJmEt3bhXPpqXMhjLd1q0NY7YKZZQnM2l7iIkjlg514ljswLALh0LHPTsM2KxWzKwpCEG8MEtnTReidZGZ84TKwFroRLgMj24meajsaoJqSRE8MMxAj0R3FPjeNRFOI0JY24g199M9mRE+zYS32YCl0JUeT8lwDo1jCOHHk0z4rbeDfUkpsk/3EGvqI7u0eGJ3WvNaB4NSS60TzWYd9f5CIS1oOx2mojnO4Ok5jbZxoJNlYr1+jaJKFrCJo966lYfN6jDrB0gPzKZS347WmJMvTGT0Y6UeD6WnpC5matoDqpg1sir3J0wceYHXNo9xo3EmRbwoWzTpke7Rjgmsjw47utZLojJBoj9D9lwNY8l1YS7xYSj3onqGPMxKJSA/Bli0EmzYRbN5EuG03yDgIDXvqZFIm34Yjez7OrLkY9tTBj9GZDFj1FBua4SBl2geJFCxh14G/sL/5LRr3/pC+g8nbY4fhosQ/ncV5V1Pqn06euxRdM0j0RAk8V0u8JYBjYSaOCzIRmsBLKrdM/ix/3Pk/rKp+hKtLP4BjbjqOucnpumYoTvRgz0CAGtnTCfHk/6GR58I6yYul0I21xAskP0dGthPdk3yvzViC6KEeEh0RzK4oZm8MGTX7/0NAcxoYWQ7sc9Lw3lCMlND10D6Y7ENzGCQCMYJvNBJJCIxiD/6Z/lH5f1GUMyWS+SDOD8ckNfrU/v37R7x/JBHmp+98kYRM8NVFv8BuONn8Zoi2xgRX3OJC0wSRroPUvHAXSEnRivuxpQydQEkmYqAZpz2NqCPUwpv1z9AaPKxGSxVFGRNCiE1SygXj3Y53E0I8THKkMx1oJpk51wIgpbxXJL9Y7yGZsCgIfFxKubF/308A/95/qO9LKX93qvMtWLBAbty4cbRfxoQR3tVJ+4+3k/aFGdhnp516h3Eg4yZNb7bzwotxZlztZ+4MQfdfDxIOSRqqYnj8Gpl5J/aju6/Kx1buI1oboPvxKmwVfhItIcI7O5IBKySnRrqN5JRIh4GMmSQC0eTzkuR0xnwX1lIvtukpyWnAoxRESVOSaA0TO9xH/HAfsYYgMhwHwD4/A9dF2cltOiLoabbj7hkO18SoPRCjsSZOY12cRHI30tKgMEuSMc1NbrGB3N5I3f5d/G3yX+iKtLFi13WUGFNIzyvAkuFA7w9CTxUAV3fvZlX1o+xp34jdcHFx/rUszb8el9V7ytfZcf8eovu6yPj6PMLb2olWBTD7E2jpafaB4NTIcgz7vigebCPYvLn/zyYiHfsAidAs2NNn4MxOjn46MucMO0FR32uH6frjfg58vptqvZJDXbvoi3UD4LH6KTBSSW07REZXA1nOPNJnfhJf2TWIY6YzRw/10PtSPe6r8rGWnvje/LnyJ2xtWcM/zv8hhd5JQ7ZFxkyiVUcD1Oj+HmQkOSVcz7RjneRDL4hBQiNRK4ju7xlYsyycBrZyL5ZiD5ZCN3q6DeISGTHRU6wYWU7MSILg2iZsk3zouS4aK/sI/L2WaF8CY1oq0z548rwoJzNRrx3Kuem8CkiPOJMbi+ruPfxy09e4xLqSS5qvpG9mDpveiXPhFQ7Ss5MXwkhXFbUv3IU04xSu+C321IqTHjPW20Skcz+u/ItHHJyaMsGO1nVsaXodi25jSd5Kin1Tx2StjKIo7z3qpiLpfA9Iux85SO+qBnL+9yI028TJ5i4TErMnip5iQ8ZNdnx9Bw24uPzbZVhtR69z61YF2fB6mGve76Zs2vADxURXJHmjv6+byL5u4vV9ySf05HTGZJIk/1mdziilJNEZId7Qh57hwJLtJN4covuvB3CvKMBW4cfsi1G9Nchzz8exyTi5/gQ53gSp1jhuM4roiwES510lrGt9iYPrNmDp0gjMj3NFye1U+OeincH61frAQVZXP8qO1rew6nYuzF3BpYU34rUNPuoI0P34IXpfrCf33qUDo9GJzgjRqgDRqh7iDUFAIhwG1hIPzouyj3vPpZTEeg8TbN5EqHkzwaZNRHtqABCGA2fmbBxZ83Fmz8eRPgPNGHnyx5ruPRx86B0mbSvgF3f+DDvp5FimUpYynXnls0l35CCEQJoJAjWradv+WyIde7G4c0md8Qnc3quw5vmB5GjnUJ+ZUKyXH73zBay6jS8v/BlWfXhrts1YnL7KSoLbq4gdDEOTDxFPriWV1gAiJ4Cl3I1rTjmOyRVo+ql/lyMhk5oDMWr2xwgHJU63RnGFhYIyy3G/YyOlrh3KaFJTdt+l2DeF5UW3sHHny0zvmk6eJxtdh8ba+EBAavOXULTyQWpeuIvaFz5J4dX3YU8bOgFRb/0bBFu24Mieh24Z2QinJnRmZ15EkbeCNXVPs63lTYp8kxFMnBsKRTkVaUoCz9biujQH3Ts6ow6KogxfuLIT6yTfhAhGpZTEm0NE9yQz1Qqbjv8jkzhcl+BtLYeF17hPuFFeeJmD6v0xXnmqj+wCA5dneMGW7rfhXJiJc2EmAGZvjHhrCEue66yscRyMEAIj1Y6RejSg0rwW3FfmY8lPjvKF93UTeKyOiyXkFhnoOhARaHYrRqaDRIqDnYkNrFr/A3plN5MqZnNZ8R2U+qePSod1vqeMj878Gk19tbxS/Rhr6p5mbcOzLMq5kmWFN5PqyDxhHz3FBgmJGYih+6wDjzlSbDjmpWOG4sRqeoke6iFW1wdWjUjXIQLrdxDp3EdQe5l4f913zerBmTUPf8UtOLPnYU+betwI5UhIKTnYtZNV1X/lQOd2VnS/j4jD5ENZvybankJHcwJ3WCNjVjLw27c9gjdFJ7vkKjzFV9Jbv4a2bffR/vdnCLR34brRTer8G9EcQycdcljc3Dn1i/xm63/w3ME/cGPF3YNuZyaihNsqkyPATZsItWw9moRpRh6Oy+fjMBYiRYxwZAPB5k3Egy20rwd9qx9H1rzkGtns+dhTJyM0Y+A1d7WZVO2L0lgTxzQhI0dn1iIrmbn6iNdXK8pYUwHpIK4suZPd7Rt5KPU3/FPaPWTlWWmsjTNjgRz4Jbb6iii65nfUPP9Jal64i8KrfoMjY8agx/NPvhVP0XJ0iwspTRKRbgz7yLLQ+e0ZvK/8Y4TjQTShE0mEqe7aRal/BhZd3eArE1ustpfAk9VoTgP35ac/RUhRlJFLdEWI1/fhvWXovAdnpR3dUSJ7uojs7UpO5dQ1rKUebFP8SCl5e3UIi9/CrAtOLEOh64KrbnHzl19388pTfbzvg+7TCrw0twXrBKxpqjkMbFOP3hfUxRxUWtJZPF/gneZMJlFKs9MnA6ype4q19c8SSYSYlr6Iy4tuo8g3eUzale0q5APTv8JVJXfyas0TrD/8EusOv8j87GUsL7qNDGfuwLZHMjcnOiMDAemxhE0gMxqJJTYRtG2i9ZHNJMKd2GquRVgcOJbMxjnzExid03CUlWFkOs8ouJZSsqdjM6urH6G6ezd2fJR2f4DSyCTc2YLymbkD2x1ZiytNSd3BGDmFkF1gYJqw79BC/KWLcRXsILb5KVp3PUXHod+QOuPDpEy5A93qGfT8k1Jnc3H+dbxZ/wzT0hdSkTr35EmY/GV4S1fizJ6PM2seFlf2u454a/8ocsPAGtpg0yZ6a18BQDOcOLLm4Myaj/As4K21pRhWnaIKC8UVVtzes5fxWVFGSgWkgzA0C3dO+xI/3/BVHt/1K64o+AqHa+N0tCZIyzr6llk9+RStfJDaF+6i9sW7Kbzq1zgyZ59wPCEEhiO5Zqen6kV6a18ldcZHcaRPH1G7NKHjtCS/+Ha3bWRT06vkecqw6Fb6oj3YDMfpp2xXlDEUbwoCkGgPj3NLFOW9J1yZrLVomzH0dMuxYoYTRPd3EdnTRbwxCAiMfBeO+elYy4+O2NbsT47kXPo+J4Zl8CAkNVNnyZVO3ng+yK7NUabPn9ila05XIiFZvzaGUeil5DYvQhN0R9p5rfrPrGt4gbgZY1bmRVxedBu5nrPTyZDuzOW2qf/IlSV38Frt31h3+CU2Nr7KnKyLWV50GznuoqMBaUcEij3IRIxQW+VA4HTc6J87D3f+0uT6z5vmYtjz0e0GZjhB56rdxDYeQnNbsBR7sJZ5sRS4hz2qZ0qTytZ1rKp5lIbAQfy2dBYYn8BRu5SZ8z24Nm5FTzk6W00Igc2ePLbQBMtvdGEml3HSu7ML460WdudlI7XJGM5/xeP4OEbgeXrefpLW7X8gfdqdpEz7IIbdf0JbVuTfxJ7mtfx52/e5o88KbXuOScI0hZQptyffg6y5wxqoEEJg9eRj9eTjn3QDALFgC6Gmzezb2kl9VTu5Df8LQGZsFhkpDtzabAjMx3TMRrOcXikZRRlrKiAdQq67hOvdHyH2ZCvNN6xF1xfSWBs/LiAFsHryKFr5O2pe+CS1L32Ggit/hTNr7pDHdWUvJNSyjbat9+ItXYm3ZOVp9QDOzryIIt9k3NZkKea1Dc/R3FdLsW8Kpf4Z5LiL0YTqDVMmhiMBabxNBaSKcrZFKjvRvBYs+WcnKZ6Mm8iERLPpxJuD9L16GD3FjnNJNtbJ/oGMoQPbS8m61SG8fu2UQebsxTaq9kR547k+8ksMfKnjPwV5tO3ZEqG7w+TaD7jpiDTzas0TbGhchcRkbtalXF50G5mu/HFpm9+ewY0Vd3N58W28XvsUbzc8z5bmNcxIX8xlvmsxgO4dL9PSvGrw0b93lWB5N82uk/LJKUSrA8SqepIj6js7EA4DW4Uf2xQ/eubgNWcTZoJtLW+wuuZRmvvqSHfkcNuUf2R+9mVEgzqBUpPMPJ3GzshJO2eEEGiapO+NRuJb2iguc1K+3EFXr6C9OUFHSxad8iMkLDeR6KjC+uomcrd8nPxZF+Mvv4FI16GBIDzSuZ8lVgvPZOfwhg1unPnRESdhGoqUko6WBKkZGXhLV+DuiSDSTcoXfpBw69b+UdTNtG9/gHZ5Hwgde9rUgSm+zqx56DbfGbVBUUbLeZXU6Eyz7L5bPBRl64+eZFfeTopKP0W0PYUrbnYN+kUY62um9oW7iAVbKLjyl7iyh17nbSaidO75K8HG9cmaV9M/csa9Vod7qzjQuZ3q7j3EElGcFjel/umU+mcMLNJXlPHSce8uQhtasRR7yPyPeePdHOUYKjFF0vma1EiakqYvv41tRgqpnxo618GonS9u0vm7vdim+HEtzUlmj20Po6cPHkQAHNwV5bmHe7niJhdT55161DPQleDP9/SQlq1z8yc8aOfRerhEXPLQz7rRUpuwLn6BLc2vIdBYmHMFlxXdTJpj8EBuNEgpCQclsWjyTzxG8t8xSTwqicUgHpP403UKyyzEQt28+GQV7SmPss+ygwjwhYe/xKGy9QRnb6IsZRbZOUtwZc8bsgTLKdsUN4nV9BLZ00W0qgdMiZ5ix72yACM9uQY3bsbY1PQqr9Q8RnuoiSxXIZcX3UZ2dDGtDZJZi49mLjaDcRo/vxZtSSParAa8xVdjTz9+3a0ZjBN4vpZ4Qx/2WWk4l+Yg9OM/Y9GwpKM1QXtznJa6DvKdvyfe+AjtffNp7L2CKVn34cuZRMS+nIRtJpW2jbzd+TgfmPIvzMu9+PT+g/rFY5L6qhjVe2MEuk0WLXOQlW8MWWIwEesj1LKNYPNmQk2bCLXtQCaS2afzr7gHT8Elp9UOde1QRtN5NUIqpXwGeGbBggWfGo3jGQ4r+eVTaKlvYuuUeykJ/QudrSapmSf2yFpcWRSufJDaFz5F3UufpeCK/8WVe8Ggx9V0K6nTPoTNW0znvsdpfueHpM26C6vn9NfW5bpLyHWXsCTvGup69nOoaye72zays3U9Plsqpf4ZlKfMwmsb2dpVRRkNsUY1ZVdRxkOsthezN4Z9DKbrSlMSbwoSPRTA7IvhuboAYWg45mdgZCbXgQpNYGScuCb0CNNMjo760zUmzx5ePgSPX+eSa52seqKPLWvDzF869PHPNWve2UtV3mMEszZgabFwUf77WFZ4Ez7b8Er19AXMgYDyuKAyKonHkn+7PBoVs5KB/5svBPGnacxYmAzuVj/Zx1DjFIIoIt5Bn2sn8Z1/JtKxD6Prdiq667iwwM8OezFBR5REPJ1X7FFeCW3EW3+I0t4tAx3kma78Ec3eEoaGtcyLtcybrOF5oIfI/m40j4VYIsLWd1azo24tu9J2kO8t56Mz/43p6RegCY0DlVF6uuLEY2Dp/2gdqUHqKp9DILiFtm33YnHn4y25GkfmHOLNIXqfrcUMJ5LlhKYMfs9ktQuyCwyyCwymL8gF/p1oz4ewVVZi653M9MtuQTOsbF8fpmZ/DINcPOlbeGTXr6hbW4TfmYrTpeFwCRwujZIpFjRNkIhLNJ1BA8veHpPqvVHqDsWTHQOpGnMutJOenbwnHarDR7e4cOctwZ23BAAzHiHctpNg8+YRLx1TlLFyXgWkY8E3KYeK2hms7X4Tl28Vwb7rSR0iw63FmUHRygeSQemqfyT/8p8PfAG8mxACd8FSLJ582rffT8uGH5Ey9QO4chaeUXsNzUKJfxol/mlEEmFqundzsHMnW1vewGY4mG5bRCwRJWZGBtajKspYkqYk0RICXWAGYpiRxITI9Kko7wWRyg4AbNNGpzPSjCSI1fZnSq3pTdbTFAJLgRuZkAhd4JiXPuzj7d8RpaMlwdW3u9D04Y90TpljpWpPlHWrQxRNsgxkwT9X1XTvZVXVI+wOb0DPsLMk8yZmu96HFvXSvE/SEI0MjFQaFsHsC5MB5IbXQiQSksWXJ2dZrX8lRF/APOH4AjAsAov1+MAlLUsfyFgshGDOhXY0HQwLiFgrse7txDs2E2l7h3jgUHK7sB3DOwfP3M9SmD0fR/pX0Qw7FUDTui1Y+jJZ0HIxEf9eEr79HOqqZGvLGwA4LR5KfNP6A9Tp5LpL0bXhXQ80h4F9ZipMtfN6w1OsqXuSKVsqKDMnseTym5mcOo9YU4hAh4kvTaNsmoWSKRb0/s+VlJK+A9sAsOXm4Cn7PsGmjfRUv0z79gfQO6di1M7CkpaB7/bSk3akDMbqLaT0wkJKj3ls5iIbFTOthPokpZ1f4k/1/8ShzPtZkvhXgr0mbc0SaUpKpyansW9/J0Jna4LlNySn11ftiRKLJkdjWxsTaFoy63JxhRV/unZ6ib0MW3LKbvb8Ee+rKGPl3P4GPwssxR789gwWxC9mvedhrJkXAEOv3TAcaRSuvJ/aF+6mfvUXyL/sp7gLlg65vc1fQtYF/0r7jt/RUfkHZDx80u1HwqbbqUidS0XqXIKxAHp/wqOq7krerH+Wmys+jd+eMeQ0D0UZDYmOCDJqYp3iJ7qni0R7GC337KxlU5T3unBlJ5YC96BZT4fL7I0ROdBNrCpArKEPTImwG1iK3FhLvVgK3afVyWQmJOtfCZGWpTNp+sjaJ4TgsutdNN7TzUuP9XHHZ7zoxsS/jkkpiYQldoeGlJKN+7bzZssjNMR2YMWN79BNlHM1liYPuwBIjujpOlisAsMijit5k56jI4+JP2cssCHlkW2P7mNYBh9BmzrXNtCuaHc1rtgmgnWb6G7edEIJFufkG5PlRdKmDFmCxZpug94Ayy6aReXGAoK7L2dOsU7O3C7qw7up6qrkUFcllW3rAbDpDop9UyjpD1ALPJOGrBwQjPXyZv3febPuGYLxAJNSZrPggzdQbJ+C7rQQCcSpvfcA0biAy1JxzkjByDoaVEY69xPY8xYaC9FTbAjNwJW7GEfmQrqeeofQ7iai3h3ES9qxRJfjMheddqmZI4QQ2J0CuxNSMoq5zvExntx/H+bkNVyatwJITsE98n+Tna/jTzv6/9tYG6e9JYHdKZg820pRuQWbQ+UHUc4/KiA9BT3Nhu62cLF5FVu09Ty866f8w9z/wWoM/dYZ9lQKV9xP7Yt3U//Kl8i77Md4CpcNfQ6bl4x5n6On6sVBs/SOhmNHQ3PcxSzMuRyfLdmLve7wiwRjPZT6Z1DgnaQy9Sqj6khCI/v0lGRA2hbGogJSRRlzR6Y4uq8aWQKcI3VCdY8FzWUh1tBHcE0jmt+GfXYa1hIvRq7zjGsZ7t4aHUjeczrHcrg0lt/o4u9/6mXdKyEuumr8M4iaCUkoKAn1mYT6kn8H+yShXnPg8YQpKbtyP6/WJ8uRWE0fVxd/lEOPXUiK38X8Sxw4XAKnW8PhFFisYsjR45LJxwdvmXnDu62TZiJZ+/NI+ZDmZAkWAN2RjjNrPs6Zn8CZNQ9bSjlimNNs9RQbiS3t5ObrZOS42L8zysFdUZobvEyZvZT5k5ej9WcNruraxaGuSqq6Knnh0J+A5CyvQm8Fpf7plPimU+SbTNyMnbLUTW+PyYZXwpCdySRPiPjeLnp2daD5bdgmJ5Mh2VMrcPmXExIBdP/R903oGhZHHrarSxGlTQSqX6Jz98NYXNnY/GXDet3DtST/Girb1vP0/geYlDKLdGfucVmlcwqPv/9acpUzOY1XY9RrhybMOLqmwgBlYlCfxFMQQmAp9iD3dXPzgk/zp70/4rH1f+UDF33wpPsZdj9FK+6n9qXPUP/KV/CWXE3K5FtxZM0btJdSaAa+smuB5IWio/Ih3AWXjPqXIYDHmsLMjAsHfrbpDqq7d1PdvReLbiXPXUq+p4w8T9lAFl9FOV1HAlLb9BR4vIp4e2ScW6Qo7w2RvV2QkNhnnHq6royZmOEEuseCGYjR88hBnBfn4JiXjrXEg//DFQNlPUZDIi7Z8GqIrHydkimn3wlaMtnKtPk2Nr8ZpmSyhdyiE48lpaQ12MChrp0c6qqkLdRInqdsYNrocNdnQnI0K9Rn4nBpGBZBR0uCqr0RsrRfY3O56BAfZ9+O6HH72B3JdYLeFIhkbWFn7AnWVB7Cb0vnxvK7uSDvSja/bhLtC7Hsw65hB5Wnq237/bRvf3CQEiz9GXC9hac9a0pPsUHMxOyLo7stTJljI7/Uws53wuzcGMGbopGWZeCzpTEnaylzspIzwvpiPVR37eZQ/wjqKzWPYcpH0ISGJnQSZnzIUjftzXE2vp7MT7DwlgxSM3XMSILogW4ie7roW1tD75tV2AozMA8baB4LwtCI1gTQ/TZ0nxX3yoL+15yFI2MW0Z5qbL7keboPPotmOPEUXXaa7/hRmtC4Y+oX+fE7n+fhXT/jc/P/C02cfHbBWIz8723fzGN7f8UnZn2dHHfxqB9fUUZKBaTDYC32EKnsYLqcR5n1IrZGHuOSwGLyPScPFnWbl8Krf0Pr5l/SfeBpeg49i9VfRsrkW/GVXYdu8w66XyLaQ7SnjniwdUwC0nebl30pc7KW0tRbw6GuSuoDB6nu3gOA355OvqeMEt+0cUszr5zb4o0hhNPAUuAGQ5BQpV8U5ayIVHYirBrWssE7FhO9MWJVAaJVPcTq+rAWe/BcW4juteJ5XxFGTnLEUVh1dOvorvveuTFCoNtk+Y2eM14ysnSlk/pDMV5+vI/3f86HYTVp7K0eCG4Ode2iL9YNJDtkM5y5bG56jbcbngcgzZE9kHSn0DUVazSTcFAS6pME+0xCvUdHPKPRZMafxZc7yMgxiEYlTXsr0eXfsRntuGbkMnvxyoERTrtTgDDZ1vJmfzmSWtIc2dxWlixHYmgWQkGTLW91UTrVMubBaPeBZ2jd9Avc+Zf0l2EZugTL6TjSaWF2RtDdyc4Bt1fjgssdxyWFbKyNkZqpY7MnR15dFi/TMy5gekYyGWQkHqKmZw+HuioJx0MsyVs56D1I7cEYO9aHcbo1Fl3mGJjOrNl07NNTsUyy0PT6n6EpBUvoCmI1vWh+KzKaoPfFeiyFbjwrCo77DAohBoJRKSWxQAOa9egsMzMeRjPsp/0e+e3p3FTxGf6868e8WvMElxffNuh2iVgf8d5GbCnlp32ud4ubMZ47+BBr6p4iy1U47JFvRRlrKiAdBkuBCzRBtLqXj17wWX60fjcP7/oJX1rw0yHXOhyhWz1kL/4amfO/QE/Vi3TufZTm9f9Dy8afJ0dNp9yGPX3mcV+Ghj2F7MX/htCTX+bhzv1YPYVoxtgVAdeERq6nhFxPCVJKuiNt1AcOUh84yO72jVg0K5mufOJmjD3tmyjxT8NlGTygVpRjxZuCGNkOhCbQ0+wq066inCXhnZ1Yp/gRlqM3nfG2MNGDPUQP9ZBoDQGgea3YZ6RiLTv6nW4tHbvv91hUsvH1EHnFBgVlQ9+GhIIm4eDgKV9t9mTAJ6WkpzvCpCtqeeWdrfz0tQP02PYRMZMzM3yWTErdcyl0TafQNY0Uaw7SBItD0kMNe1p2sr12Bzuj77ChcTUA1kQKvsgU/NEppCYmk24vwOnS8afrycyoboHHn3xPnbHVlOr/jK/8ehLhLnorv0nhVVm4ci4gbsbY2PQqr9Y8TluokSxXAR+Y9lVmZ158XCKfzW+GiUWTQe5YCrVso3Htt3BmLyT/8p+e8frIweipyfuUREck2QnZTwgxEIxGI5Ita8MUlFmYuWjwwM5mOAZyYAxGSsmerVEOVEbJyNaZf4kDi/X4jg1pxmnf/gBSbyfz+g9j8RbSsncDRrodYdXx3lA80N6hCCFIn3M30owDEOmuonXzPbjzL8FTtBzdenrJIedmXUJl23peqnqYySlzyNScxHobiPUexlt8FZrFSW/dGnoOPUfesh+hGTZ669/E4s457YGK1mADf6r8EQ2Bg1yYt5Lryz+BRR+7+0pFGYnzKiA9pg7p6B7XquO+ugAj04FusXJz2ef5/e5v88KhP3HdpE8M6xiaxYm/4ib8FTcRbt9N597H6Dn4LN0HnsKWOpmUybfiLb12oFDykWA0Ee2lbeu9GI500mbdhcWZMaqvbTBCCPz2DPz2DGZkLCZuxkj0fxm3BOtZf/hlUuwZuCxeuiPtdIZbyHGXYNNPv8dQOX/FmoLY+zN8Gml24mqEVFHGXLw1RKIlhPuKo+XEwrs66VvVAICR7cC5JBtLiQc91XZWE9vteCdMsFey8k7HoOeVUlK1J8buLRHMExPGkhBhHCXVkJ3M4FrVsRdTi0IpWPpy8fctJk1OwReZgt1MTsfthf4kQckgfPIsKxWzysmwlmLbdyWTZlnA38T+tp3sbamkIbKL/bG3AXAaHkr8ycywKf7pZLtL0TWNUNsuDr/xHzgy55C95BvIRJTqZz9M9atfpe2CT/NG86t0RdrI85QdV47kWH0Bk+3rwkyeaSUta+xuyWK9TdS98iUMVzZ5l/14TIJRAN3fH5B2Dr00w2oTLL3GidWW/L/v6UxgmuBPG94ovJSSzW+EOVwbp2iShRkLbCessZVS0rnnr0S6DpA242NYfUXJdvXEsE1LtvHYhEenIvrXWmqGE0f6DAI1q+itew1X3kV4ii7HsA8vi3Ui0kOst4Fo72GWmSkcQPDHjV/jTpmNgQBh4Micg81XjDN7ATZ/KULTkWacQM0q4qE2HOmz8JVfP+yRbSklG5te4W/7foMhLHxs5r8zI2PxsF+7opwN51VAOtp1SI9lm3R0ylPf7qkURq9gTd1TTEtfRFnKjBEdy542lZwl/0Hmwq/Qc/A5Ovc+StPb36d5w0/wlV6Df/JtONKnAaBb3aTN/CQdlX+g5Z0fkjr9IzgyRna+M2VoloFER7nuEm6f+nmcRjJwPti5gy3Nb6AJQYYzjzxPGfmectIc2SOqNaacn8xQHLMripGdnPqnp9mIbesd51YpyvkvvDOZoMY2PXmjHKvvpW9VPZYCN+6rC9Cc43P5j4Ylm9aEKZw0+HpPgO3rItQejJGdb1BYbiFs9tEQ2k19aBd1wV00hw9ihhOIao1cdwlz066iPHUGFRnTePZBQV+PyZW3u7APkY1U08DtSz5ns2ssveZIkrVCst2FLC2+BiklHeHmgaQ7784MW+guxX94CznuVBYu+wGabiUiE1RPv57Xah4nVPsoxd4KbpnyOaakDp47AmDjmhCJBCxaPnajo2YsSN3qLyDjEQpWPIBh94/ZuTSfFcTJA1IAj+9o8Ll3W5Tm+jiFk5JrTo8EqkMRQpCWrZOSkVx/PGjNzrrX6Dv8Nt6SFTizFwBghhPIYPyM1kJbXFmkzfw43tJrCFS/RG/dGnrr38SVuxhv0RUYzqMlj8x4iFDrDqy+EizODEKt22nbdt/A87rNz0rXLB7r3cTW9HzeV/YxDGfGQPBrcWYcNwiRtfjf6a19lZ7qlwmt+z6u3CX4yq5Btw2d6yMU7+PxPb9ia8sblPpn8IFpX8FvH35ZJkU5W86rgHQsSVMS3deF5rKQU2ijcP37CRTt5C+7f8ZXF/0CuzHy7H66xUXKlNvwT76VcNtOOvc+SvfBZ+na9zj29OmkTL4Nb8kKHOnTyFr0L7Rt+y1t2+7FW7ISb+nKcZv777H6B/49O3Mpue5SGgIHaeg9xOam19nc9Dp2w0HuQHKkUlXz9D0q3pwcjTiyFs1It2P2xJDRBGKU16QpinJUpLIDPc02MApk5LpwXpKDfUYqwhi/zsKtb4cJh+Sg01OPlCDLLTZwpsQ5aHmcNw5voLG3GolEFwYF3kksy7qJUv90in1TT7j2XnVrnL/e20Plhggr73Sf9sivEII0RzZpjmwW5lwOcDQzbOd29ta/zH5XcsnOcxs+R4FnEs19dQTjAUq9ZUw5tJ6yeB6F8+YM2YZAV4KdGyJMnWsb9ujgSElpcviNrxPp3EfBFf+LzV966p3OgNAFmt96yoD0WHOW2Nm3PULV3hiNtXGmzrVRUGac8L51dySIhCSZeck6nEMJte2ia98TODJm4y29duDxRFd/CZ1RSM5lcWWROv3DycC0ZhW9DW/T1/AW9rTJOLMW4Mq9ADMeoaPyIfyTb8PivBSrtwj/pFuwePKwuHPRrW5ygYa9v+KthheZVXgdZVrOkOfUdCvekqtx5S2hp+pFeuvfJNi0AU/RcjxFl6MZx/9O1XTv4U+VP6I70saK0g+xvOiWUyZQUpTxogLS4RIQfLsFI9dJ9qX5GOvtXGz7R/4e+AZP73+A26d+/vQPLQSOjJk4MmaStfCfkkHp3kdoXPstmt/5Eb6y9+GffCtZC79K556/0FP1PNGeGlJnfBTdMr7lM3RNJ9ud7FWez2WE4n0cDlRRHzhAQ+AQh7oqcVk83DH1iwghiJsxVVbmPeRIhl0jO3mh1NOT07rj7REsOeNfokFRzkcybhLZ3YXjgkwiOzqS03I9VhxzxndkJBw02bI2TOlUC1nHJO+RUrJ7SxRdh8mzbSS8h3m69oc09tVQnjKLq0reT4l/OkXeilOueUvPNlh8uYO3Xgqxd1uUKXNGb42cz5bG7MyLydjzLFPrDpF66X/R5klPjqJ276LUP53Lim6myDeFTv9jNL31HVo2/pSsRf806PHeeS25fGHRsrFb7tK29V4CNavIXPhPuPNHp8b5qegpthEFpBarYPoCO/llFna+E2HbujC1B3RmLrLhS00GUFJKKjdFiIYlGTn6kCVQYn1NdOz8PRZ3HqnTP3JcUGt2jl5AeoThSCNlyh14S1bQU7OKcNsuEv3Zi3Wbj+zFX8foH+XUbb5BM/W+r/wT7OvYOuwBDt3qIWXyrXgKltF98Bl6ql6gt/5NvKUrcedfgsTklZrHeanqz/hs6Xx23n9T7Jsyaq9ZUcaCCkiHSQiB99ZSNHey1y4tSyd0uIzLpt/MK7WPJbPDpS864/PoNi+p095PytQ7CbVspXPvo3Ttf4LOPX/BkTkHf8Wt+CbdRPeBZ2h++z/xlV+PM2fRWV3/czIOw0VZygzKUmYMTHnqiwUQQiCl5PG9v6LcP4v5OWeePl2Z+OJNQRBgZPQHpGnJG69EW1gFpIoyRqKHepDhBNYyL8G3mrH1xHBdPHqZVE/X5jfDRKMnjo4KIYiGJZoueav+eZ4+8AA23cEnZ3+TqWnzR3yeuRfZqdob4/W/B8krNvD4R29UqH3HA/Qceo6MeZ8nvfRasmAgM+yxUibfSqTzAB2VD2Hzl+GvuOm457vaE+zeEmHmItuotu9YPVUv0rb1XnyTbiR1+ofH5ByD0VNsxA8HR7yfL0VnyVUO6g/F2b05whvPBSmebGHSDCs2h8a8i+wghq7HKc04bdt+C0InffanTkgEmRiDgPQI3eYjpeIWqLhl4DEhxLDWedp0O++f9hV+uelrPLX/t9wx9YvDOqfhTCdt5sfxFC6n68BTRDr3Y2bO4M+VP+Fg1w7mZC7llimfxWGout/KxKcW+Y2A7jm6ViG3yKAvYHJhyu3kukt4dPf/0hvtHrVzCSFwZs0l75L/pPz2ZO9mItxJ45tfp/HNbyaTH2kGnXsfwYwGRu28o+nIlKdC7yQAEjJORcocslwFAPRGu1lV/QhVXbuIm7HxbKoyRuKNIfQMx0CWT+NIQKoy7SrKmAlXdoIGjrnp+O4ow7kka7ybRF/AZNu6MBXHJO+pPxSjpzMBwKT5UbY4f8YT+35NqX86X130i9MKRgE0TXDlzS6klKx6og9pDp6pd6QCNa/SuukXeEtXkjbrrlNun7Xon3DlXkjj298l2Lz5uOfeeSWErsOCS8Zm7WiorZLDb3wdR+Zcsi/8+lnttB7pCOmxhBAUlFlYdr2LogoLVXtjvPNaGNOU2J3akOuCob+ee/n1pM/+FIbjxNqyRwPSk1dHGA/FviksL7qFDY2r2dm6bkT7Wn1FZMz7PI1ZU/jx+i9Q17OPlbYKbi/6kApGlXOGCkhHqG9NI6GNrWTnGwigpV5w57QvJReO7/0VUo7Ohe9Yht1P2oyPUHrz0xSueAB33hK6Dz1HT9XzODPnoNu8ydT3h14gHu4c9fOPFkOzMDf7UvK9ySzIPZEOWoMNvFLzOA/v+ilr6p6iIXAIUw6SVlE5J8X6S74cofmtoAviKiBVlDEhpST0djNGpgPNaaCn2IYcUTqbNvUn77lguYNYVLJ5bYgtb4Wp2hvjYOdOfrLxS+xq28D7yj/OXbO/idc2vKylQ/Gl6sn6pFVxtq07veDoWOGOfTSs+Rr29BnkXPTtYQV4QjPIW/ZDrO486l/5MtFAMsNxe3OcvTuizLrAPlA3czTFgi3Ur/4iuj2V/OU/QTtFebrRpqfYkOEEZih+2sew2gQzF9m55BonxRUWTvV2x/qaAXBmzh5ynWyiI5qc5TZB8xdcWXInee5SHt3zSwLRrmHvF0tE+Nu+3/CHyh+Q4sjksxVfYrqWgm5LJp88UrJGUSYyFZCOUKIjQnhXJzaHRmqWTmNtnFx3CStKP8iO1rfZ3PzamJ1bCIErZyF5y35A+a3P40ibTvM7P6Tx7e8R66mlp+pFwm2VY3b+0ZbrKeGOqV9kRekHKfZNoaZ7Ly8c+j/+uvvnrD/8Eq3Bw2MS4CtnhzQl8eYQluyjU3OTtUhtJFTpF0UZdVJKAs/VkWiPYGQ7J8z3Z6A7wY7+5D1SwprnghyuijNppk5jxmPcu+XrWDQLn5//A5YV3jRqGdqnzbdRPNnCWy8H6WhJnPZx4qF26ld/Ad3qIf/yn6EZw1/zqdu85F/xv0gzTv3qL2DGgqx/JYTFCvOWjv7aUTMepn71l0hEAxRc8b+DjhSOhUQ0QLB5K/Fw18CU2NMdJT2WL1WnoGzwTLpH9DVtpGndfxLpOnTyNnZGxmS67mgxNAvvn/YVIokgj+355bB+fxt7a/j5xn/irYbnuLTgRj4//wfk515E1uJ/R7d6kFLSsvFndFT+cUIPWCiKWkM6QpZiN7E1jSS6IuQUGuzcECHQneDSwhupbHuHv+27jzL/DPz2sa0XanFlUbjit7Rs+gUdO39PuG0X2Rf+P+xpUwEINm0EBI6sodPNTwSa0MjzlJLnKeXCvJXU9eznUNdOdrdtZGfretIcWdww6VMT+jUog0t0RCBmDpR8OULVIlWU0SdNSe/L9YQ3tgDgXlkwYb43N/Qn78nM0Vn7YhC7UzB9WS/PNv+U6po9LMhezo0Vd59WtvqTEUKw/AYXf76nm5cf7+XWu73o+sjeEzMRpf7VrxAPtVN0ze+xODNH3A6br5i8ZT+i7uXPUvnsLzi4624WXWbH4RzdMQEpJY1rv0W4rZL85T/Dnloxqsd/97nifY2EWncSattBtLsakCAM7OZSIJ1ERwRL7thPGXWkT8dXshKrr/ik2yU6I2gTOCAFyHYXsqL0Q/z9wO/Y0LiaRblXDLqdlJK3G57n6QMPYtcdfGr2t5icNm/g+YHffRnH5i+jt24NwebNuAuW4S2+Es2icjgoE4saIR0ha3GyfEm0ppecAgNNg652E03o3Dn1S5gywV93/+KsTDsVmkHWwq+Qt/ynRLurqXvpM/Q1vAVA7+F1tO/8Ha0bf0a0p3bM2zIaDM1CiX8alxffzvunfZmlBe+j2Ddt4It1Td1TVHXtGudWKsM1kGE35/g1UnqanUT7mfecK4qSJBOS3hfqiO7tQjgMhNPAWuod72YByeQ9uzZFSM/Sqd4fI6fAwL9oCw8c+gqNvTV8YNpXuXPal0Y9GD3C5dG47HoXLYcTbHgtNKJ9pZQ0vf09Qs1byL34uzjSp592O9x5F5K16J/ZsWsWVkuEOUtGf3R0IOHS/M8Pms11tIQ79tG49ls0rftPug8+DdLEW3oNGfO+gCt3MeHgJmB0RkhPJh7uRCZiaIYDb+mKU5bCm+gjpEdcUnADpf4ZPLX/t3SEmk94vi/Wwx92/BdP7LuXMv8MvnrBL44LRo8lNAv+ipvIXpJcTxyoWUXjW98mUPMKUuXuUCYQFZCOkO63ofltxKoD2J0aV93qpqA0WcYk3ZnDdeWfYH/nNt5qeO6stclbdDkl1z2M4cyk7uXP0brlV6TP/jQpUz9ALNhC8zs/pKPyTyQiPWetTWfKZjioSJ3LnKyLgeQaiY5QC32xnoGf93dsoyfSQcI8/alYytiJNx4p+XL8jaaebsfsjiJjaq2wopwpGTcJPFdL9EA3jouyiTeHsE9LmRDrRgHWPJv8HnC4BNMWwcGM3/KXvT8k05nHVxb9nHnZl455G8qnW5kyx8rGNWGa6oa/nq5j15/o3v8k6bM/jbd0xRm3I+y8jfbQYgo9vyfc8PwZH+9YRxMuXUPazE+O6rETsT7atj9IsGUbALrdj8WdQ8qUO8ld+n2yFv0zvtKV2FMrSJ16J9mXJ8vcJDojSDNGx+6/EOtrGtU2mfEQrVt+Sdv2+4a1vYyZmIHYORGQakLjzqlfAuAvu39+3ADHgc4d/OSdL7K7fSPXlX+CT87+Bh7rqddbG4400mZ8hKwL/hWrt5Cu/U/QvvOPY/USFGXEzqspu0KI64DrysvLx/Q81iIP4Z0dyLiJxZqM6Y8U9F6cezU7W9fx7IHfU5Eyh0xX/pi2ZaBNviKK3/cnmt76Hm1b7yXUsp3cS/8LZ+YceqpeJFD3OsGWLXhLrsZTeBniHKsFatFt3FjxqYE1FfWBg6ypexoATQjcFj8emx+vNRWPLSX5tzUFny0VXTuvPubnjHhTCOE00DzHf9aOZNqNt4ePW1+qKMrIyLhJ4NlaYjUBXMty0VPtmF1RbDPOLCHQaOloSVCzP0ZGjs7UK1t4rObHtAUPc3nRbVxV8v6z+t18ybXJBEcvP97LnZ/1YbGePGDvrX+Dlg0/xlN0Belz/+GMzy+lZN0rIZwuQcWkGhrXPo7VW4AjY9YZH/v4hEvfOuOp2rG+ZkKtOxCagadwGZrhIB5swYz1AWBxZpIx5zND7m9xp6J5LSQ6o8QChwk2bcSZORuLKxspzVOOZJ6KlCbtO/9APNhKyuTbh7VPomvsSr6MhVRHJjdW3M1fd/+cNXVPsTT/el6ufpjV1Y+S7szl8wu+Tr6nbMTHtXryyZj7OcIde9GMscnwrCin47waIZVSPiOlvNvn843peSzFbkiYxOr7MBOSt18OcrAyOfVBCMHtUz+PoVl5ePfPzuronWY4yFn6PbKXfINg0waqnr6DSNfB5HSNC/8de8pkug88TdPb3yfYsm3CJLwYiSMX2mLfVK6f9EkuKbieWRkXke7MJZqIcKirkncOr2JV9SP8bd9vaA0eBuBwbxVv1D1NOJ7srQ/Hg0QSah3jWDqSYffdN0d6en/CC7WOVDkPSCmJ7O5EJs7+92nvS/XEanpxXZ6HfVYa4coOAGzTxzcgDXQnaKyNsW51EMMmSb/yVe7f8y9E4iHunvMdVpZ9+Kx3FNrsGlfc7KKr3WTtSyevkRnpOkTDa/+KLaWC3KXfO+MACqDuUJyGqjgLLnVQdMV/YTgyqFv9pWGPHEopkYMsBTo+4dLPR5RwaeDYZoJw53669v2NxrXfoent79J94EnCHXsAEEIje/HXcOctGfYxj5R+sfqKyL34O9hSpwDQvf8pWjbfQ7hz/4jbeUT3gacJt+0kZfKtw14nm+iYuCVfhrIgeznT0y/g+YN/5J5N/8Kq6kdYkLOcLy34yWkFo8eyp07G6i0cpZYqyplTQ0enwZLnAkMjVh3AWuzB7tKwHNPp5rOlccvkf+BPlT/k1ZrHuKLkjrPWNiFE8ks6bSoNr36V6uc+StaifyFlyh2kz7mbcPseuvY9TqD6pVHpmR0vQggynLlkOHNPeC4cDxKIdtIT6STFkUxA0RftoT5wkMW5yWlX21veYkfr29gNxzGjqin9o6pppDqyMM6xUeSJJt4UxD7txBtjPV3VIlXOH5HKTtp/uoOUT0/FuWjkCW/OhGNhBtYyL7bJ/oG2GDlOjNTRX584Enu2RGlqiHHwYAfxi37HC3VbmJ6+iNunfAGXdfzWthaUWphzoY2tb0dAwsUrnBiW4zvM4uEu6lZ9HmHYKLj856OS/EVKybpVQdw+jRkLbeiGnYIr/pfqv3+I+tVfpOia358wWiXNOF37nsCeNhVHxkxiPbU0b/gh6XM+iyN9Wn8A+SSBmlXEQ62kTf8IfYffRjMc/X/sCMOJ1VeEbnEhzVhyJpeWzFhrxoKE23cTattJuK0SMx5MJiRKnYS7cBmO9OlnlKFXT7ENJK879j3UHanEGt+hddPPsfnL8RRfhT1t6rBHdfsOryNQswp3/iW485cOuz1Ha5CeGyOkkLzPuXXK5/jx+s/TGmzgg9P/iblZl4x3sxRlTKiA9DQIQ8OS7yJaHcApJXMHSU4wJ2spO1vX8VL1X5iSvuCMe7NGypE+nZLr/0rD6/9G87r/JNSyjZwl/4E9bQpZF3wNM9aLEIJENEBP1Yt4S65Gt3rOahvHit1wYjecZDjzBh6blDqbSamzB34u9k3BYTjp6Q9cW/rqONRVOTBqLIQgxZ7B9eV3oWs6vdFubLoDy1mu53auMkNxzK4oRs6JN3O639Zfi1QlNlLOfbZpKRhZDnpfqMOxMGPMM9ua4QTR/d3YZ6ZiZDgwMpKBjIwmiOzrxrUsZ0zPP5RoRGKaErtDY+YFNnY+tZnGRfcitCA3Tfo0S/KumRBZf5dc5QQh2PpWmMPVca6+3UVaVvJWSJoxGl79KvG+JgpXPojFPTrvZfXeGM31CZbf4EQ3ku+BLaWc3GX/Q/2qL3D4jf8gb9kPB96feLiL9h0PEO2uQrO6cWTMRLN58JasxHAmM/hLKQk2rife14gz5wJifY1EuqtAHj8rK2PeF9BTKwi1bKd95+/IXvx1LO5seqpeIFD7CprFhSNjJvb0mdjTppzWCOtg9BQbkX3dJzzuKbgUd+4SehvWEqhZTdvWX2H1FuEtuRp7+syTfkYiXYfo2P0XbCmT8VfcPKL2JLqiA+06l3isfr608KdoQj/j2ryKMpGpgPQ02aamEG8OQUKCIUjEJeGQPK7I9c2TP8Ohrkoe3vUTvrjgJ1j1s/tFqNt8FFx5D+3b7qd1yy+JdOwhb/lPsPlK0G3Jac2Rzv30NazFnXfxeROQDkemK/+E9b0JM0FvrIuucBvtoUZC8T50LVlAe239swTjAW6q+DQAVV27sBsu0h3ZWM7y/+u5IN6czGb57oRG0F+LNEXVIlXOD0ITuFcU0PWHfUR2dw06K2A0hXe0E1rfgiXfddzNdWRfN8RM7OMwXbezNcGmN0O4PRoLllt4cvdDVGY+hZd8PrXwu+S4i896m4aiG4KlK50Ulhu8/Hgff723h6UrncxYaKNp/f8QbNpAztLv4cycfeqDDYM0JetWh/ClakyZe/y1wlNwKZkLvkzLxp/Qtq2cjDmfIdy5n/btDyLNKGkzP4kzay4Ahj0VX9m1A/sGG9cT6dxH+pxPkzH3c8lzSYlMRJGJMGYshBkPYXFlAWBx5+Ervx7dlhyhduVfjCNzDlZf8ahMSX43PcWGDMYxIwk0m37cc0K34Clchjv/Yvoa3yFQ/RJt2+7D4srFW3JVf7m649sUD3fQtu23GPYU0mZ9AjHCKd+JjgjCoaM5zr3bXr89fbyboChj7tz7zZwgbJN82CYdXav6zqsh4jHJ0muO1txyWjzcMfUL3L/t2/xhx3/y8VlfP+vTQIXQSJ9zN/aMmRx+/V+pfvr95Cz9Dt7iq5JtzJqHLaUC3eoGoGv/k1i9hTgy506I3uyzSdd0fLY0fLY0inyTj3tuZsaFxMxkD6uUkrX1zxJJhBFC4LWmkubIJt2ZQ7ojh1RHNjZ9fKfMjbeBki/ZgydN0NPtasquct5wXphFz5PV9L5YN+YBqWN+BtZizwkjPZHKTjAE1gr/mJ7/3RqqY2x9K4zdIciY2sE9m35CfeAA/pbL+PIN/4DLMTG/C4smWfnAPyaD0teeCXJgSxWl+gvkzP44/vLrR+08ByqjtDUluOpW16A1UFNnfJRI1wHatvwKMxYi2l2F4cwgfdYXsbizBz3mQMKl4itJn3M04ZIQAmHYwLANdDofYXFnH3c8izMTTqOm6nAd+XyaXRG0rMGnPQvNwJ23BFfOBQSbN9NT/SLtO39Plisbq+doh7EZj9C29T6QCdLnfBrdMvLapudKyRdFea9SAekZkAlJoiOMkeEgI9dg95YIwV4Tp/toz97ktHncOuVzPLrnHh7a+T98ZMa/jsvaRHfehZRc/wj1r32Vhlf/idD0D5O54EsIzTIQjJrxEKG2nQRqVmFx5+EtWYkjc/Z7LjAdTK6nZODfQghumfwPtIUaaQs10h5qorl/yu8RXlsK09IXMT19EQCRRPg9FaTGG4OgMTCd8N2MNPtAAhZFOdcJi4b78jx6nqgiVteLpcA9qsdPBGL0ra7HdXk+uscy6O9VeGcHtgrfCaNRY0VKyf4dUfZuj5KaoWNMXceDB34DUidjx+dZsWjphA1Gj3C6Na7/sJt3XtzLhrdSabP+kZXLT8xLcLrMRDKzbmqGzqSZgy/3EEKQuehf6WvcQEflH/BPvp2shV8eMgPqcQmXLv7umIxujgY9Nfl6E50RjCEC0iOEpuPKWYgzewHRroMDwWjX/qcwnJk4s+djcWXhK78ei2vwIP1UVECqKBObCkjPQHBdM+EtbaR+ehq5RcmAtLE2Ttm04y88F+ReRdyM87d99/Lnyh/zwen/PDAV9GyyuLMpXvl7mjf8mI7KPxJq3Unesh8MTOnRDAfZi/892VN56Hnad9yPxZ2Pr+yaU67teK9xWNwUWCZR4J008Fgo3kd7sJG2UBPtocMYItnxEIwFeHjXz7i08AbKU2bRGjzMKzWPogkdTejowkATGprQ+v+towmN6RkXkOsuoSfSwY7Wt5mevgi/PYOOUAvV3bvQhI5Fs5LvLcdnO/3kE2Mh3hRCT3cgLIPfLOlpNsyuZC3SobZRlHOJa1kOgWdrCbxQR+qnpo7acRM9UXqeqEKGE5h9MXTPiR2aiY4I8cNBnBed3s36iNsUl7z1dh17W3YSK9hHpXUPbQcOU+qbjnfbp4hFU5m+4Ny4+Y8FavF33MVFUxayo+Ub/O33fSy8JMGiyxxog4xojsTe7VG62kxW3ulGG6IubKyvmfbt92P1FSPjIXprXyVj9t2DBqTHJ1z6xagkXBorR4K/REd02PsIIbClJMv2STNBtH9NrKZbSZv58TNqT6IzkkxIqSjKhKQC0jNgm+rHkuMEkexp9adqgwakABflX0PCjPH0gQfQd/+M90/7Epo4+0Gp0C1kL/4ajsxZNK79FlVP30Hesh/gykmO5Amh4cpegDNzLsHmTfQcep62bfdh9RTiLb0Ge/p0FZgOwWG4yPeWk+89vg6uEBoLcpbjtyWTUVh1GznuYkxpYpoJTJkgIY/+HTOjmNIkbiYLuIfjQWp79lHmnwlAV6SVLc1vHD3B4ZdId2RTmjKDUt/0cc1ieUSsKYglZ+gaZwOZdjsiGFmqFppy7tNcFlyX5tC7qp74TSUY6Wc+OpjojNDztypkzMR7U/GQI03hXZ0AY7Z+VEpJa7CBQ107OdBRyd6WSkKiDVLAIVwUO6dxScH1ZPVexnNVIS67wX5C9tqJKBHpoW715xFCY/p1X2W61c+a5/rY8HqYukNxrr7NhTfl9K7TibjknVdDZOTqlE0belaUGevDjAXJWvBlAKqf+wh1r3yRohUPohlHg/qBhEvBZopWPDDkdN6JQvP3B6Sdp5e8Tmg6GfO/eEKSptMh4yZmd1SNkCrKBKYC0jNgpNrhmPT6OYUWdm+NEOozcbhOHPW5pPAG4maM5w49hKEZ3Dbl82jjNN3GV3oN9tTJ1L/yFWpfvJuMeZ8nbebHB6b/JKfQLMKZNZ9g0wa6Dz1P27Z7sfknkTH/CyooHQGH4WJ25kUDP/tsaVxScMOw98905fP+aV8e+LnUP50S3zRMaRKO91HVvWug/uo7h1eR7Sqk1D+ditS54zISL01JvDl00rV0R27W4+1hFZAq5w3XlXn0rm6g9+V6/O8vP/UOJ5HoiND9RBVIiffmkiGnvwNEdnag+awY+aMzAmTKBI291RzqSn63HOqqpC+WzJhqNX34o1NYnH8Dc0tnke0qQhMa0pT85dc9+FI1ps6d+Df+0ozT8Pq/EO2pp2jFfQPTRK+4yU1hWYRXnw7y8K96uOx6JxUzR/56dm2O0NNpct373CdcL6U0CbfvwZE+DZu/lJyLvoXQk0Fr7tL/pOHVr9D41rfJXfr9gX2PJFzKXfp9HKOUcGksaTYd4TJOOyCF/rrj4sxvUxM9UZDnXoZdRXkvUQHpGUp0RohWBbDPTSO70GD31uS03dKpg68XWV58KzEzysvVf8HQLNxc8Q/jFtzZ/GUUX/dnGt/8Fq2bfk6oZRu5S783kIUP+gPT3MU4sxfQ17gBMx5ECIGUkmh3FVZfiQpOx4EQAl3ouKxeZmQsZkbGYnoiHRzqquRg1062taxlStp8AFqDDfhs6Wcty3OiIwIxc9CSL0foaf0jpCrTrnIeMVLtOC7IJPhGI97ritDcp58vILSpFeIm3ttLT1pXVJqS8K5OHLPTTvu7OG7GqA8cGAhAq7t2EU4kE5Ol2DOZkjYv2RHmnc7h7akUz7XiTzu+s+vArhhtTQmuvGXw5D0TTcvGn9LX8BbZF30TZ/aC456rmGUjq8DgpUd7efGRPuoOxLjkWhcW6/BeVzwm2fBaiJxCg6JJJ34GeuvfoGvvo2Qt/GesvqKBYBTAW3wF0bn/SOuWe7D5y0mf9Qk6dv+Frj2PkDbzE/jKrzuzF34W6Sm2MwpIR0uio78Gaaoq26YoE5UKSM9QrKGP4JuNWArduNPteFO0kwakAFeVvJ+4GePV2scxhIXrJ901bkGdbnGRt+wHdO6aTfOGn1D1zJ3kLv3+QKr5I5LZ8C4c+DnSsZfWLfeQNvMTOLPmne1mK4Pw2lKZk7WU2ZkXE04kOw5MmeDlqr+S7S5iedEtACTMOPoIU+aPRLzx5Bl2ob+nWlMBqXL+8VydT+itZvpeO4znfUWnfRwZTaB5LCcNRgFi1QFkXxzbCKbrRhMRarr3DIx+1vbsHcginuksYE7WJZT6p1Pqn4bfnkHtgRgZfh2HUyNzyYnHM03J+tVBUjN0KmZN/Jv+rn1P0FH5R1KmfZCUilsG3caXonPzJ72882qIjWvCHK6Jc/XtbjJzT/3duWNDhL6A5KrbHMdd26WZQGg67rwl6FYfVt/gn4+02Z8i0nWA1k0/x4wFaN/xe9wFl5Ix7/On94LHyUQJSM3Oc7MGqaK8l6iA9AxZipO1O2PVAYx0OzmFBnu3RQkFTRzOwafjCiG4puwjxM0ob9Q/g6FZuabsI+MWlAohSJ3+IezpM2h4/V+oee6j+CtuJnPBl09IHX+ELaWMlKkfxJGRXNcYat2O0O3YUyvOZtOVQQghcBjJqXsCjSuKbx8IQHsiHTy5/7cUeSdT5p9Bjrtk1Kf1Hi35MvQIqdCTtUjjqvSLcp6x5LuxzUyld3UD7qvyEdbT+/2ScQnDGGkMV3aCYFgBaSQe4qGd/8P+zm2YMoFAI9dTwuK8FQNLAdzW47/zw0GTyo1hiiusTJ03+A39/h1ROk+RvGeiCDZtovHt7+HKW0LWwq+edFtdF1x4hZOCUgsvPdbLo/f1sOQqJ3MW2xBDvM5oRLJpTYiCMoP8kqMjn70NbxOoXU3Wgq+gWZw4s+YMeV4hBDkXf4dooI727Q9g85eTe+l/I8ZhCcaZ0FNsxGoC492MgaBY96uAVFEmKhWQniHdbUFPdxCtCeBYkEFukYW925J1xwpKh14fKoTg+kl3EZfJkVKLbuWqkvefxZafyJk1h7KbnqR1y6/o2PV/BGpeJXPRV/GVXXdCsCw0y3Ejpj1VLxHtqcaWMimZ/Chl0rsPr4wDIQSZrvzjHivxTaOmew8HOndgN5wU+6ZS6p9OtqvwtDtFYokooXgf4Xgfifo2hNNA81jY1PgqXlsqk1KTa55WVf0Vq2HHbfGR7jOIt3ShhVtxWbxYztKUYuXcIYRYAfwc0IH7pZT//a7ni4AHgQygA/iQlLK+/7n/Aa7t3/S7Usq/nq12e1YU0PbDbQTfasa17PTKiMiEROinzjEQqezAUuhG95x6ZHJ1zaPs7djMpQU3Up46m2LflIHOq3dLxCWaDnanxsUrnLi9Q7el9mAMh0ucNHnPRBAN1FP/ylewevLJu/QHiGHOFMkvtfD+z/lY/WQfbz4fpPZAjCtvdh1X4u2IbevChPokiy9PdshJM0bn3sfpa3gTW8pkpDSHdU7NsJN/+c9p2/ob0mZ+4rRqb443PcWK2RMb92zqic4IwqohXOqWV1Emqgn/2ymEKAX+H+CTUt463u0ZjLXYTWhTG2Ykgdurs/wGFy7Pqb98hRDcVPEZ4maMl6oexhAWlheP70vULE6yFv0TvvLraHrruzS+8XW69z9F9oVfx+YvGXK/zPlfpLdhLYHql2jd9HNsKZPxlV2LzV96FluvnIrXlsrSgutYkreS+sBBDnVVcqBzO3vaN+GyeCjxT6PUP4N0Rw5CCLoj7cTNGGmOZEbHbS1r6Yl0DASf4XgfoXiQuBkbOMdFdYtIzc5ACEF970EyzQiTmE3CTBCK99EaOkwo3scM2yRS61J4ce+9ANh0Oy6rl0kps5mRsRgpJQe7dpDpzMdrSx2X90sZP0IIHfglcCVQD2wQQjwtpdx1zGY/Ah6SUv5BCLEc+C/gw0KIa4F5wBzABrwmhHheStlzNtpunezDUuIh8GI9zktyhhxNOxn7VD9SnnwbMxgnerAH94qCUx6vNXiY12ufZH72ZVw36RMn3TbYa/LOqyGKJlkomWLF4z/5yFxbY4KMXGNC5xNIxPqoX/UFpExQcPn/HpcrYTgcLo1rP+BmxzsR3nwhyMO/7ObKW9wUlh8NwiMhky1vhimZbCG7wCAe7qR9+wNEe6rxFF2Jr+x9IxrltDgzyVnyHyNq50QyUPqlK3LSpFxjLdEZQUuxTejPp6K8141pQCqEeBB4H9AipZxxzOMn7fU+lpTyEPBJIcRjY9nWM2Ep9hDa2EqsthfbJN+wgtEjNKFx25R/JG7Gk9l3dcspM7BKKdm4JkwiJll8xdjUIbOnTqbo2ofo2vs4LZt+xqGnbiFt5idIn3UXmnHimiahW/AULsOddxG99W/SU/0SLRt/gi11Cr7Sa08azCpnn64ZFPkmU+SbTCwRpbZnH4e6drK7bSN72zfzgelfxRAW1jW8SCQR4vpJnwSgpnsPfbEeHIYbu+HEZ0vDYbiwG67+v51onS1YZiY/lzdMuuuYc+oDN8IJM0HHgf1E9zSzLPdGemUPfbEe+qLdGFryBi+cCPJ67VMszrua6bZFdIXbeO7gQ7itPlwWDy6LF5fVh8eaQpojG7fFp244zi+LgAP91wCEEH8BbgCODUinAV/p//erwJPHPL5GShkH4kKI7cAK4JGz0G6EEHhWFNDx612EN7fhWJAx4mPYpg5jCu6eLjDBPuPkHTZSSp7a/1sMzcK1ZR896bYdrQk2vhbCNMHtO/W1LBGXdLQmBk3eM1FIM8Hh179GpLuKwqt+PeTazVMRQjDrAju5RQYvPtrHU38IMPciOxde4UA3BFvWhomEJRdc7iDcsY/2Hb9DmlHSZt510im656uBgLRz/ANStX5UUSa2sR4h/T1wD/DQkQeG6vUmGZz+17v2/4SUsmWM23jGjGwnwqoTqw5gm+QjEZdsfTtMRq5BYdmpL9Ka0Llz6peImzGe3v8AhrCwJP+aIbff+HqYdatDABRPtpJdMDb/jUJopEy5DU/Rcprf+RHt2+6j59DzZF/4/3DnDZLZgv7AtOgyXHlL6G14k0D1Klo2/hh72lRSZ3zsnJx2dL6z6FbKUmZQljKDcDxIR7h5ICicl73suG2vK//ESYM+MxSnsefwSdePQjI4dWb6icpmiijHyDzxZsWm27l1ymex6skOEE3oFHor6I110xVppyFwiNgxI7N2w0GaI5s5WZeQ7SocWCOngtRzVh5Qd8zP9cAF79pmG3AzyQ7OmwCPECKt//FvCiF+DDiByzg+kB1z9nnp6Jl2Ai/UYZ+fPuLPodkbA0NDsw89ohap7EDYdKxlJx/t29W+gT3tm3hf+cdPOtugoTrG1rfCOFwai5Y5hhWQdrQmMBOQnjNx1ze2br6H3rrXyVr877hyF5/x8dKzDe74jJc3XwiyZW2YhqoYl1zrZOvbYcpnWLBFX6e18kkMZybps7+IxTWxa4aOFT31SEAaHdd2JDojWCv849oGRVFObkwDUinlGiFE8bseHrTXW0r5XyRHU885QhNYitxEa3qRUqIbgkhIEo+eYr7VMXRN54PTv8pDO+M8se9eDM3CotwrT9huxzvJYLRippX6qhhrXwxy8yc9Y3rTbTjSyLv0v/BPuoGmt79P3UufwVuygsxF/4zFOXjPv2bY8BZdjjvvYnrrXyfcvhfNSAYpsWArhmPkN2jK2LMbTnLdR0ezM5zHr3871f9ZvDnZUXKqgBTASO+/WWkLD9p7rgkdny1t4GevLYWLC45+RUgpiZoRusNttIebaQ810h5sRJBsY23Pft6oe5rryj+O355BINpFwozhtaWNW/1fZdT9E3CPEOJjwBqgAUhIKV8SQiwE3gJagbeBxLt3FkLcDdwNUFhYOKoNE5rAfVUB3X/aT3RfN7bJ/hHt3/14FUaWA88Q03GllIR3dmKb6kcYQ3+eY4koT++7n0xnAUvzBy8ZIqVk/44oe7dHScvUWXCpA6tteN/PbY3JtzUjZ2KuAOo++HfadzyAf/JtpEy5Y9SOa1gEy65zUVBmYfWTfTz22wBCwOS85+nevwZH5hxSp31o0BlF7xXHjpCOF2lKEl1R9JSJn/1ZUd7LxuMKMpxe7wH9vd3fB+YKIf6tP3AdbLsxu7EYDmuxh+j+7oGb6yVXjXwqraFZ+MiMf+V327/Ho3vuwdAsx41Q7dse4bW/BymZbOGKW1zs2hThtWeCVO+NUTJl7L9sXbmLKbnhMdp3/o727ffTW/8mGfO/QMrk24ZcF6MZNrzFV+EtvgoAMxak5Z0f4sq9EH/FTWPeZuXsGk7JlyOO1CKNt4U5nclUQghsup1MV/4JiZsA3BYvZf4ZuK1+AHa3bWRH69sYmoU0RxZpjhzSHNmkObLx2zJGPduwcsYagGOjsfz+xwZIKQ+THCFFCOEGbpFSdvU/932S1w6EEH8G9r37BFLK+4D7ABYsWDD8HsRhcl2UReCpagIv1I04IHUuyTrp6GiiJUSiLYz76hM/+8d6vfZvtIebuHvOdwYt95SIS7atC9NQHaeg1MLMC2wjqiPa2hjHYgVf6sTr5Am1bKNx7bdwZi8ke/HXxqQTtGyalaw8g1ef6SMtUyclU0e33oCn6Ir3fKer5jAQdn1cA1IzEIOEVFN2FWWCm5hdmseQUrYDnxnGdmN6Y3EqliIPwmFg9sSgf7RHSkksyrB7miEZlH505r/zwLbv8PCun6FrBrMzL6Zmf5SXH+8jt8hgxR1udF0wbb6NrW+FeeulZPIJ7SwUI9cMGxlzPoOvZCVN675P87r/pPvA02Rf+HUc6dNOub/QrfgrbsbiSd5nxvqaiXQdwJWzCKFN3DVIyvDEm4KgMegU3HfTU2wgIDFGpV/SnbmkHzPCOyVtHin2DNpDTbSHmtjfsZVd/VN+daGT6sgizZHNkrxrEEIQS0QxNMt7/qZyHG0AJgkhSkgGoncCHzh2AyFEOtAhk6lL/41kxt0jS0P8Usp2IcQsYBbw0tlsPICw6rguzyPwZDWx+j4s+cNfsmCbNHjJrSPClZ0A2KcPPQW3M9zK6ppHmZmxhIrUOSc8HwmZbHg9TGdbgqlzbJRNH/nnvbUpQVqWMeHKvcR6m6h75UsYzkzyLvvxmF5fLLKaq2+wYvXkA4PXNX2vGu9apAMlX1JVQKooE9l4BKSn7PUeL+3NcdxeDZtj5D29mtMg5a4px13M160KIQQjTjxk1W18YtbX+e22b/F/lT+mp11j56NTSM3Ued8H3RiW5Dl0XXDhlU6e/0svu7dGmT7/7H3hWn1FFFz1G3oOPUfzOz+k+u8fIHXqB0if97mTrhMVmnHcGp5g00Z6qp6n5+BzuIuW4867GM1QF45zVawxiJ7hOOkUwiOEoSVrkbadnZsVry01WYKGZAkaKSU90Q7ago39QWry7yO/w6trHiWWiAwkYlpb/xwxMzKQvCn5txuH4RxI6mSoTpVRI6WMCyH+EXiRZI6BB6WUlUKI7wAbpZRPA8uA/xJCSJJTdj/Xv7sFeKP//7KHZDmY+Nl+DQCuy3Lpfa6W3hfrSPnklGHvF2sKorks6J7BP1ORnZ3oGXaMrKE7f57Z/wCQXPs96DliyTqjCy6xk1M48s+ulJK2xgSTZ0+s6ZBmLEjd6i8g42EKVtyPYfeP2bmkmaCj8k/oNh8Z87+gOrDeZdwD0o7IQDsURZm4xiMgPWWv9+kSQlwHXFdeXj7ifRNxyd//rxdNg/d90ENKxsin7wkhkP15+oUQ+NN1Du6KEo3IEY2SAtgMB3fN/ia/fOc/eLrhRxTnfokb7rwYm/34G/2yaRayC3TWrw5SMdOKxXr2LoZCCHxl1+LOX0rLpp/Tsev/6Kl+iawLvoan6PJhXZi9pddg85fRU/0S3fv/RqD6Jdz5l+AuXKYSIJ2D4s0hLMOYrnuEnmYfsxHSUxFC4LOl4bOlUZYy44TnJ6XMRnK0ZmAoFqAz3Eoo3ntcMqVj5XvKuLo0+XX2Vv1zpDqymJI2H4Dq7t3YdOdAhuDBpk8qx5NSPgc8967HvnHMvx8DTsjALqUMk8y0O+50twXn0hz6XjuM96aSYY/U9Dx2CPvcdFwXnZgQR8ZNInu6cF6YOeT++zu2sb31La4u+QCpjuO36+5I4E3RcHs1LrvehW6c3nWjp8skGpGkZ0+c6e5Smhx+8z+IdOyl4Ip7sPnLxvBcEqHppM/5NJrFqYLRQegpNmK7+sbt/AMjpCogVZQJbazLvjxMsgc7XQhRD3xTSvnAYL3eo3E+KeUzwDMLFiz41Ej31Q3BFTe7eO7hXh65r4cVt7somjSyXt9EIEbP44dwXpiFbbKf3CKDA5VRmurix9UqG65Ijw3PW1+mc8r/UFf2CxqivoHRnSOEECy5yskTDwTY9naYBZee/dTqus1LzpL/wF9+PY1vf4+GV7+CO/8Sshb/G1ZP3kn3FUJgT5uCPW0Kke4qAlUv01P1PIHaV3DnXYS7cPmY9m4ro0eaknhzCPv0U5erOEJPtxPd2zV2jToD7w5Sryg5mhAlbsYGarGG4kHC8V5C8SBOwz2wTUe4BZuR/H1MmHFWVx8fNzkMJy6rD5fFi7u/hE2Ws4BMVz5SSiRSJV86T7ivyqfv1QZ6V9Xju/3UAZKUEkyJGGIZRvRgDzKSwDbEdN2EGedv++4j1Z7FssKbj3uusy3B2heCzLzARtEk62kHozAxExq1bf0NgeqXyVz4VdwFS8fkHFJKAtUvkYj04J98KxZX1pic53ygp1oxu6LIxNCf57GU6IyAIdDcavaKokxkY51l9/1DPH5Cr/dEkFds4Y7PePn7//XyzB97uehqB3OW2Ifd66m5DIwsB5oz+bZ6UzScbo3G2tiIA9K+gMmTvw8goi4+M+87/KXuGzy4/XvcPefblPiP7/jPK7ZQMtnCpjfCTF9gw+Ean5tYR+ZsSq57mI7dD9O6+R4O/e0m0ud8hrQZHx7W+h2brwTbnLuJ9R6mp3oVgdrXCNStIW36h3BmLzgLr0A5E4n2MMTMYWXYPcJItxFaF0HGzWFN850oDM2Cx+rH058waTDvK//YwL+F0Lh58mcIxgIEYwF6Y930RZO1V7sj7RzurSKWiDI78yIyXflEzQh/rvwRi/NWMjVtPsFYgJ2t604IYO26GpU5FxjpdhwLM+l7vRHP+4oGrhFDSvTPtNEH/50I7+wADWxT/YM+v7b+WVqCdXx85v/Doh/fsepP05g230Ze8ZnfoLc2xhEC0rImxghpT9VLtG39Nb7yG0id/pExOYeUkq59j9Nb9xrOrAUgTRAT4/VPRHqKDSSY3dFxWceZ6Iyg+22ICbbGWVGU402cbs1RcCZTdo/wpujc+ikvq57o5c0XQrQ1J7jsOtfAus2Tnl8TeFYezfArhCCn0ODQ7iiRsHnCdNuhREImT/0hQKjP5MaPecnONfh0+nf41eZ/5/5t3+buOd+hyDf5uH2WXOXkz/d0s/H1EEuvGb+prkIzSJv+YbxFV9K8/n9o3fQzeg4+Q/aFX8eZPX9Yx7C4c0mb8RF8ZdcSqFmF1ZcsQxLrPYyUZn/iCGWiiTf1l3zJGX5AqqfZQY5/4fSxpgmNFHsGKfbByyQBRBJh6J/yj5TMyryINHty5KU32s2u9g0kzOMrl+iajt+WwY0VI54Uopxl7qvzCa1voe+1w3iuOXkmeNkfkDLEiFKkshNrmRfNceIlvCfSyYtVf2Zy6jympS867jkzIdF0QenU0Vnz2daYICVdH9b1cayF2nZx+I2v48icQ/aS/xiTjhppxuio/CPB5s24Cy/DP+lm1SF0Crr/aOmXcQtIVckXRZnwzp0hiWGQUj4jpbzb5zt5dsJTsdoEK+9ws+gyO3u2RPnb73roC5in3rGf2RvDDCbzZ+SXGggB61eHiIRPfYxYVPLMn3rpbEtwzfs9ZBckbzg81hQ+M/d7uK0+frvtW9QHDh63X2qmztR5Nra/E6G784Rye2edxZ1N/uU/Jf/yX5CIBal5/uPUrfoC4c79wz6G4UgjZcodGI5kLcrug8/SuvmXSHNccpMopxBvGn7JlyOOlH5JtI9f0ouJwqbbB6b42gwH87MvGyhnk+nK56Mz/o0PTP8KN0y6iyuKb2dx3tVMS1tEjrtoPJutDJO1yINtWgq9qxqQsVNcC46MkA4ynTbREyVW0zvkdN3nDv6BuBnjxopPHRcshfpMXn68j6a60fv+bG1KkJ4z/qODsWAr9au/gG5PIX/5T9H00Q9AzHiY1i33EmzejK/8RhWMDtORIHS8EhslOqNq/aiinAPOq4B0NAlNcMFyJyvvcNPWlOCv93bT3HDqC7kZSdD5u72Et7cD4PXrLFzmoLfH5K2XQoT6hr4RSSQkz/+1l8a6OFfd6j5hmq/PlsZn5n4fh+Hivi3foOFdQekFyx1oWjK770ThKVxG2U1/I2P+Fwg2b6LqyVs5vObfiQbqR3ys1GkfJH32pxCagTQTtO/4PaHWnQOJpJTxFW8KIpzGiNbqGOlHa5EqJyeEwGG4SHfmUOSbzPT0RSzKvYILcq8a76Ypw+ReWYDZHSW4rvmk28lE/3VikBHSyK7+ci8zTlyrXd29m41Nr3BJwQ1kOI9fv1+9L0YsKvGmjM5lPxQ06e02yRjngNSMh6lf/UUS0QAFV/xioANzNCUiPbRs+jmRzv2kTvsQ3mJVY3S4tJTxC0illP0jpCogVZSJTgWkp1A+w8qtn/KiCcHj9/ewb/vJv1Q1m46R5SBaHRh4LDPX4ILlDsIhyeY3w4MGUNKUrHqij5p9MS673smkGYP38KbYM/jM3O9h0a38dMOX+eWmr7G2/lkC0S7cXo05F9rZtz1Ky+GJM4qoWZykz7qL8lufI23Gx+ipfpmDT1xP07r/Jh5qH9FxbP5SAOLhdiJdB2nbdi9Nb32XQN0azLgaZRtPscYglpyRrWnUU8e2FqmiTCS2qX4shW56X6xHmifpSIsPvYY0XNmJ5jawFHmOe9yUCf627z681lSuKL79+MPFJDX7YmQXGjjdo3PZb2tKzsRJH8eERlJKGtd+m3DbTvIu+S/sqZNPvdMIxYNttGz8KfG+JtJn331c2TLl1DSXARZtoPzK2WT2xSFmqoBUUc4B51VAKoS4TghxX3d396geNyPH4PbPeMnMM3jx0T7efjl40psJS7GHREtoYNouQFqWwYVXOJh1ge2EG3YpJWueC7Jve5QLr3QwY4H9pO1Jc2TzxQU/ZkXphwjGe/nbvt/wnTc/xn1bvoGsWIvFE+Stl4Jn9qLHgG7zkbnwy5Td8nf85TfSueevHHjsGlo230MiGjj1AY5hcWaSc9E3SZvxMTSLk669j9D45n/Qtf9J4uGOMXoFysnEm0Ijmq4L/bVI/TYSaoRUeQ8QQuBeUUC8MTgwi2YwQ60hlVISqezENjXlhCQt6w+/TEPgINeVf3xg6vcRdQdjxGKSslFaOwrJhEYAGeNY8qV9x4P0HHqWjHmfx1O0fNSPL6Wko/KPmPEgGfO/gCPjxPJQyskJIZK1SLvGISBVJV8U5ZxxXiU1OpOyL6fidGvc9DEPr/09yMY1YdqbE1x1qxur/cTRIGuxh9C6ZmI1AWxTj06r8qfpR9rJvu1RsvIN/Gk677waYvv6CHMvsjN/6cmD0SO8tmQv+BXFt9PYW8PW5jVsbX6DJw7+L9oCg4bWmbi3LWPpjAux6cM75tlicWWRc9E3SJ3xEdq2/Ir2bffRteevpM26i5Qpd6AZw2uv0Ayc2QtwZi8g0lVFoPZVAjWvEKh5BUfmHDyFl2Hzl4zxq1EAzFAcszs6ogy7R+hpNuJqhFR5j3AsyKDn8UP0Pl+HY0764Bv1T9l9d5mMeH0fZncU24zj14/2xXp4/uAfKfVPZ07WJcc9J03JoT0xUtL106qvPZS2xgQurxi3rO6Bmldp3fQLvKUrSZt115icQwhB6vQPI804FveJ9WCV4dFTrOMyZffIqOx4JFMaDbFYjPr6esLhiXl9fPnll2du27aterzboUxYJrAzHo/fNX/+/JZTbXxeBaRjTTcEy29wkp6t88bzQR79bQ/v+6AbX+rxF3k9w45wWohWHx+QHhGLQn1VHNOEmv0x3nk1zNR5Vi662nFa61Jy3EXkuD/MitIPURfYz+bGNayLvsEL7T9l9Ru/YkbGBczJXMrktHkYwyi/crbYfMXkLfsBqTM+RuvmX9Cy4cd0VP6J9LmfwV9+A0Ib/sfT5i/B5i8hHu6gt24NfQ1vEettIPvCryOESBYwV2t+xszRhEanEZCm24ke6BntJinKhCR0gfvqArr/fIDI/m5sk05Mwqd5rLguz0N/V+bpcGX/+tF31fp94dD/EYr3cWPF3Sd8zzXVxwn2mkybN7odk22NCTKyx+cWItyxj4Y1X8OePp2ci7496t/tweYthNv3kDL1TgznEJ0GyrDpKbZx+Y5PnOMjpPX19Xg8HoqLiyfk/UsikYjPmDGjbbzboUxMpmmK1tbWaU1NTfcD159q+/Nqyu6Z6n6iisCLdSQC0SG3EUIwe7GdGz7iIRgweeTeHuoOxU7YxlrkJlbbO+jUXqtNsHSlEyEka54NUjLFwvLrXWf8hSOEoNBbwY2T7+JjOb8ma8vXKLNcwt6OLfxux/f59psf4ZHdv2Bfx9YTykeMJ0f6NAqvupfCFQ9gcWXRtPbbHHryZnqqXxpxwiLDnop/0o3kXPxd0mfdhRACMx6hef1/E2rdPkavQDmdki9HGGl2Eh3ho9MUFeU857w4G+Ey6H2hbtDnNaeBfXoquuf4DsTIzg6MXOdxN9gNgYOsa3iRi/KvIdd94oyQQ7tjON0a2fmjFzzGY5KOtvHJsBsPdyQz6lo95F/+s2HPqBmJWF8Tsb5GZGLoewFl+PRUG4nOyMnXTY+BRGcENNB852bZl3A4TFpa2oQMRhXlVDRNkxkZGd3AsNY6nFcB6ZmsIZWmJHawh55HDtH01XV0/HoX4Z0dQ36BFpRZuP0zXpxujaf+EGD7+uOTFVmKPchIYmDk6N0aqmOs/luQnEIDmz3Ziz2aJs90UOicjrHuw/y/Rb/nk7O/ybT0RWxrWct9W7/Bd9d+jL/t+w1VXbsw5fBL2owlV85Ciq79I/nLfw5Cp+HVf6L6mffTd3jdiI+lGTYs7hwAzFgvmsWNZnEDyRuaWF/TqLb9vS7eGAQNjIyR3xzq6XYwx68sgKKcqVBwZN+hmk3HvTyP8NZ2Yo0nXiPMUJxYU/C48jBmJEFkfzf2Y6brSin52777cFo8XF3ygROO09maoKM1QekUywlrTs9Ee0sCaSbzK5xNMhGj/pUvEw+1k3/5z7E4M0fv2FIOJNnzlqwgc/7n0Yxzc2RtotFTbJCQmIHYqTceRYnOCLrPNqqf/bNNBaPKuUzTNMkwY83zKiA9kzqkQhOk//NsMr+7APfleUT2dNL+0x00f209PU9XE+84cQ6/L1Xntru9FE+y8Prfg7z6dJBEf3ZES6EbhCBW3XvCfodrYjz/l17Ss3VW3unG6dbZ/EaY2oOj92UtNMGSq5wEukx2bYwzNW0+75/2Zb518UN8dMbXKPVPZ/3hl/nl5q/xn299ir8f+D0NgYPjXkJFCIGn6DJKb3iMnIu/SzzcSe2Ld1Pzwl2EWnec1jENRxqZ8z8/kKE3UP0yTW9/j9YtvyLcvnvcX/P5INYURM9wIIyRf6Xoaf1lAdQ6UuUc1Fwf5/c/6mLL2tCIRoBcl+eCRaP3xRNHSWMNffQ8cvC4RDDRfV0Ql9iOma67ufk1qrt3c03Zh3H0d7gdq7UxjsUiKCgb3aUabUcSGp3FEVIpJY1vf49Q8xZyL/4ujvTpo3dsM0Hn7r/Q/M4PiIc7EUIgJtDylnOdPk6lXxKdEbSUc3N0VFHea86rgHQ0WHJd+O4oI/tHF5LymakYWU4CT9XQ/C/rafvZDkKbWpHxo73WVrvg2g+4WXCJncqNEZ78fYBQn5ks/5LrJFp7fPbY1sY4z/ypF49f4/qPeHB5NC5Y7iA9R2fb22Gq9ozeFKGCMguF5RY2vh4mEkq22aLbmJm5hI/M/Brfuvgh3j/ty2S7i1hT9xQ/3fBlfrD+s+xq2zBqbThdQtPxT7qBslueIeuCfyXSuZ/qv3+Q+le+TKTr0Bkd21t6Dd7Sa4kG6mnd8kua1n2f3oa1yMTZ7b09n8SbQlhOY/0oHK1FqgJS5VzkTdUoLLfw5gshnv5jL8He4Y2W6h4rrouyCb7dfEIGUkuOE8/1xejHTDUM7+wEi4atItnhGo4H+fuB31PgmcTCnCsGPUfFLBuX3eDEsIzuKEtrUwKLDbz+s3cL0bHrT3Tv/xvpsz+Nt3TFqB1XJmK073iAvsNrceddjG7zj9qxlaTxC0ij5+z60cHse/gydv9u1qj92ffwZcM675NPPokQgj179gw8Vl1dzcyZM53f//73B6YpfOQjHyn8xS9+kQZwyy23FGdmZs4KhUICoLGx0cjLy5s52PF/8IMfZFRUVEybMmXKtPnz50/etGnTSadabdmyxT5nzpwpVqt13je+8Y2sY59ra2vTV6xYUVpSUjK9tLR0+qpVq1yDHeM73/lO5j333JMG8OCDD6aUl5dP1zRt/po1a467kVm/fr1jzpw5U8rLy6dXVFRMCwaDAuC3v/1tSkVFxbTy8vLp//AP/zBQ9Pn55593T5s2baphGPN/97vfDfQeHj582Fi6dOmkk72u9zoVkA5BWDScCzNJ/+ossv57EZ73FRKr76XjV7to+ud1dD96kFj/dFyhCS680snVt7lobojz13t7aG2M416eh/emo2t6utoTPP1QAKtVcONHPQPZCQ2LYOEyB9kFBjs3Rti3IzJqo3ZLrnIQDks2vnHizb7dcDI/+zLumv0NvnnxH7h18mfRhcGD27/L3w/8joQ5/rVMNd1K6rQPUnbrc6TP/Sx9h9dx6MmbOfzmN4j1Np7WMXWrB1/pSnIv/jap0z6EEAadux/m8Jtfp/vAMyQio1s26HwnTUm8OTjiki9H6KnJa09clX5RzkEOp8Y173ez7DonDdUx/nxPNzX7h9ex6L4qHxKS3tUNxz2uuSxYiz0I69ERyEhlJ7YK38BjL1f/lUC0k5smfxpNnHgpj8eS1xCbffQv8/+fvfOOj6pK///n3Du9ZSa9994oSehFqgjSpFpwd/2qWFbBrr9VXHfddW2ouKC42FjWCDYQARGkFymhBUghvfc2vdx7fn8MCQQS0iYFnPfrlVcyd+4998xk5t7zOc9zPk9NOQd3b0GfpULqSg6i6sS7UAZNgvuQRx3WLm81oPr0ahir06GOnA+X8JnOFMleoD8jpLeSIOVMna/b7sj2UlNTMWbMGKSmprba7urqirVr13qaTKY2vzQsy9JVq1Z16Ar24IMP1mZnZ1/MzMy8+PTTT1csX7484Eb7e3p62j744IOipUuXVl773MMPPxwwderUpvz8/AsXL168OHjw4OsGFlarFRs2bHBfunRpLQAMHjzY+N133+UkJyfrrt1vyZIlIR999FFhTk7OhQMHDmSJRCJaUVHBrlixwn/fvn3ZOTk5FyorK4VbtmxRAkBoaKjl888/L5g5c2arN9fX19fm5eVl/eWXX9oUyE6cgrRTCDykUM0JgfdbI+C2LB6icBfodpWi6i8nUP2vMzAcqQBv5hCZKMa8B1XgeYpv/9OE/DICRmwfPOiaeGz5QgueB2b/UQml+hpnXpYgaawE/iECZJ21IOOUxSGi1MNHgKhEEc4eNUHb2L6RkVyowgi/aViW/C5G+k3DvqIf8NHp/4cGU3WP++AIWKEcHoMfQdj87XCNvQ9NuduQ+92dqDn3WbffJ8IIIfcdAa/hL8AjaRnELmFoKvgFZYdWdGvd6u8VrtYE2Gi3DI0A++QPoxaBq3GuIXVyc0IIQcIwCRY9ooJMzuDH9Toc3HFlCUd7CLykkCZ5QL+3DLzxygQg12CGJbepJRvHVmuCrdzQkq5bqS/GweIfMcxnCgJVkde1a7VQ/PqDHgXZjjfloTxFTYWtz+qPmhvyULrvBYg1EfAd+w+QNsR3d+DMjahK+wDmxgK4xf8RysDbHNKuk+thlEKAJX0qSHmjDdTE3VKCtD/Q6XQ4dOgQPv30U3z99detnlOr1XTMmDHa1atXu7V17NKlS6s++ugjL6v1xtlnrq6uLWklOp2ObZ4Ueu211zwXLFgQDADHjx+XRkRExGm1WsbPz882fvx4g1AobHWBra2tZY8dO6Zcvnx5DQBIJBLq7u5+3cB369atqoSEBINQaE/LHzp0qGnQoEHXfTi///57l5iYGOPIkSONAODt7c0JBAJkZWWJg4ODzb6+vjYAmDRpUtM333yjAYCoqCjL8OHDjQxz/XVqzpw5DevXr2/zvXJyiwnSnpgadap9hkCS6Aa3x+Pg/fYIqOaHgGuyoP7TLFQ8cxQNGy5BYzNi0SMucPdmseNrHc5sKEfDgQr8+KUWRgOPWfcr4dpOLTiGIRg8SoLgSCFyMyxIP+4YV7oRk6WgFDi2x9jhvkJWhHlRj+HeuGdRrivEyhPLkVFzssd9cBQCiQZew55F2LyfoAgYj+q091G67znw1rbNozoDIQQSTQTcBz8M71EroAy4DSKXYACAuSEXjbnbwNs6fu9+r/Sk5EszAneJsxapk5seNy8BFj6iQsJwMc4cMeGb/zShvubGjuaKaf6gRg76A1cyPiz5Wmi3FYJeFrTm5nIv8a6glGJz9icQsRLcEbakzTYpBfxDBdC4O140NtbzsFr6xtDIZmpA8e4nQFgRAiatAiPs/jXmaqz6SlSeWAmbsQYegx+BzDvJIe06aRvCELBqUUtd0L7gZi/5MlDYsmULpk2bhsjISLi5uSEtLa3V8y+//HL5hx9+6G2zXZ9RFxQUZElJSdGtWbOmQxH2xhtveAQEBMS/+uqr/qtXry663HZVfn6+eP369eoHHnggePXq1QVKpbLdNRFZWVkiV1dX24IFC4JjYmJiFy1aFNTU1HSdzjl48KBi6NChHQ4as7KyxIQQjBkzJiI2Njbm5Zdf9gKA2NhYc15eniQrK0tktVrx448/asrKyjpcrDx69Gj98ePHr1/s7wTALSZIe2Jq1FVYFxGUdwTC6x8pcH9+ECSD3aE/VIHqv52C/r3TuD1Uh9h4BqWndDi7pQ71NTbMuFcJL78b38QJIYhPESM8ToTCS1aUF/c8bValZjFohAQZpy2oqehce0O8xmF5ykq4iN3w6bm/YVvOlwMihbcZocIHfhPehWfycmgLd6Ng2xJYtCU9b1fmAXXkXAjl9iLo5voc6EoOghD7/81qqAIdQO/DQKCl5Es3U3YBgHWTONeQOrklEAgJbrtTjhn3KKCt57Hxo0ZknGp/GYYoRAVRtBr6XaVX/Akul0AiAnukwHS+DoxGBIGvDOerj+JS/VlMC7kXSpG67TbFBHHJkutqZDuC6nK7wO7tki+UUpQdeBE2fQX8J77f4preU6y6ClSdXAnKWeCZtBwSt2iHtOvkxrAacZ9GSJvFL+vqFKQ9ITU1FYsXLwYALF68+Lq03djYWMuQIUN0a9eudW3r+BUrVpSvWrXKm+dvvLb+pZdeqi4uLj7/17/+teTVV1/1AQCWZbF+/fr8Rx55JGTkyJHaqVOn6m/Uhs1mIxkZGbLHH3+8OiMj46JMJuNfeeUV72v3q6ioEHp4eHRoGmKz2ciJEycU33zzTf6xY8eyfvrpJ82WLVuUHh4e3HvvvVe4YMGC0JSUlOjAwEDzZTfZG+Lr62urqqpyumy1wy0lSPsDQgjEUWq4PhgNn5Uj4XJvOMAD2tQcxOxLR5S7GVUyFaYtUiIgtHOufYQQxAwRY8QkKXwCHTMLnTxOArGY4Miuzkf6PGR+eDLpbYzwvR17i77DR6f/ggbTwKmBTAiBW8IDCJiyGlZ9RbdLxNwIVcjt8Bn9KggrBKUUNac/QtnBV9BwaQushiqHnutmxVpuAJELwCi670rJuonB1fV9nTonTnqL0BgR7v6zC7z8BNj9gx47v9HDbGp7UKac5g+u3gzjcfs1paUmL0tAeQpzRgMksa6w8hb8mPMZfORBGOl3R5tt1VbaUF1u6zX38JpyGxgG7Wb6OApTzXnoS4/AI+lJyLwGO67d+iwADDxTnoZIdcOlak4cCKsRg2vou7quzghpz6mrq8OePXvw4IMPIjg4GG+//TY2bdp03bVlxYoVFe+//75PW9echIQEc2xsrOHLL79sMfh54okn/KKjo2Ojo6Njr93/oYceqtu1a5e6+XFGRoZEJpPxFRUVHQ4wgoODLV5eXpaJEyfqAWDRokX1Z8+evS6tQiKR8CaTqUP94+/vbxk+fLjWx8fHplQq+SlTpjSePHlSBgD33HNP47lz5zLPnDmTGRUVZQoPD+9wtsVgMBCxWDww6iwOQJyC1IEwMgEUE/3g+dckeKwYCtkob8jKGjCqLBfejXUwpXdtQbqHjwCEEGgbOaQdNLaYVHQHiYxB0jgJCrOtKMnvvJuskBVjfvTjuCf2GZTp8vHeieXIrE3r+MA+ROE3GiEzUyGQuqPol0dQe369QwdjjOBK5E8dOQ9ilxBoC39FxZG/oerkB9CXn/hdO/TaKgwQest6ZAYicJcAHL3ObdSJk5sZhYrB7D8qMWKyFDkXLPh6dRMq2sh6Ece7QuAnh3ZHMSil9kgpQ0AIgTVfC2qwQRyvwd7C71BvqsKcyKVgmesFIaUUF0+Zcf5E732Pqis4aDxYhzv3Xkt95kYwAhnUkfMc2q4yYDx8Rq+AUObh0Had3BhWIwZf7zjDxo5oEaRqZ0Cqu3z77bdYsmQJCgsLUVBQgOLiYoSEhODgwYOt9hsyZIgpIiLCuHv37jbTE1999dXy1atXt0QqP/zww9LMzMyLmZmZFwEgPT29ZdZg48aNLkFBQWbAvib0mWeeCdyzZ09mXV2d4GrX2rYIDAy0eXt7W86ePSsGgF9++UUVFRV1XepVTEyMKScnp8OZirlz5zZlZmZKtVotY7VacfjwYWVcXJwJAEpLSwUAUF1dza5bt87zscce69Bw5fz585LIyEjn+q92cArSXkIUpIR6SQS83x0JViOG9sdC6PeWwXSu6y5pTfU86qs5mE09u5APGiGBQsXg8E5Dl28KQ73HY3nySqhEGqw7+xq2564Hx994bVRfIlIFIujODVAGTkDViXdQduD/gbc5NgWUEAKpRzzcBz8M37F/h0vYLHDmetRd+BJlB/+C+qxvYdGWdtzQLYatwtij9aOAPWUXADin066TWwyGIUgZL8X8B1UAAb5d14QT+4zgr8oGIIRAOS0AtjIDzOl19pRd5kq6LghgCLFib9F3GOw5FmGa+DbPVVfFoaGWR2iMsNfcYmvKbb1ef9RmakBT/s9Qhd8JVuSYJVeUt8LcmA+g9SSjk76BdRWDWnhQfd8seeHqLWBUwm7Vxh6osBLH+uF01F5qairmzp3batu8efOuS9sFgFdeeaW8srKyTfWfnJxsiouLa3fN5sqVKz3Dw8PjoqOjYz/44AOvL774Ih8AHnnkkYAHH3ywKjEx0fzll18WvPrqq36lpaWCoqIigZeXV+Inn3zi9d577/l4eXkl1tXVMQDw4YcfFt17772hkZGRsefOnZO+/vrr15VjmDNnTuORI0eUzY/Xr1+v9vLySjxz5ox87ty5EWPGjIkAAA8PD+7Pf/5z5ZAhQ2JiY2PjEhMTDYsXL25s7ltYWFjciBEjop9++unyxMREMwDs379f5uXllbh9+3bNU089FRQeHt5SMHnXrl3KadOmOcs4tAPpq9mqviQ5OZmePDlwjHh0u0rQ+HUuZOO8wTdaIJ/kB0lcm+n27cLZKFgBAaUUNisgFHVvsJFxyozdP+gxbaEcEQldT2WxcmZszv4PjpX/ghCXWNwX/xxcxAPHNIxSHrVn16H69GpI3KIduvao7fNRmOsvQV96GIaqswC1wTP5aYjVob12zoEEb7Sh/M+HoZoXAuX0wG63Y60woOovJ6B5MBqykV4dH+DEYRBC0iilyb18ju8BfApgB6V0QKYs9cV9w2zise9HA7LTLfALEWDqfAUUKvuAmdp4VL50HKyHBNIUT1guNcL14RhU//M0KE+xbdYOXKo/i+eHr4Fa0nYlhRP7jKir4jD5LjlYgeMFqUHH49M3GzDmDhmGjLphqcAeUZv+BapOrkTI7G8hcb3eRbg7aIv2oSH7W3gNfxEipb9D2nTSeYwnq1H30UV4/jUJwoDe93WpeT8dfJMFnituXsOqjIwMxMTE9Hc32uX8+fOG+Pj4jP7uR3eYMmVK2MqVK0sSEhL6LC0rOTk5aseOHTkeHh4DJ5rTB5w9e9Z90KBBwR3td+tMHaH3XXa7i2ysD4hcAL7JCmGgAvpfy2DOauhSG82Di8wzFhz62QCjvntjuqjBIrh5sTi629hhSYK2ELJiLIj5M+6OfQqlujysPL4MWbWnutWX3oAQBu6DH4b/pA9gaSpG/tbF0Ff03iCTEAKJayTcEv4E33H/gCZ6EUQu9tqzjXnbUZfxdZ+lKPUHLQ673Sz50ozgsvGEsxbpLcsaAPcAuEQI+RchJKq/O9QfiCUMpi6QY/JdclSV2pD670bkZdjX1REBA8UUf1iyGmGrMoCwBLzBBkteE3ShJlyoOYbJQQvbFaO6Jh6VJTYERwl7RYwCQE2FfRzVmyVfKOVRn7UJUq+hDhOjACD3HQnX2PucYrSf6OtapLdaDVInjuWdd94pKSkp6b7xRRcpKysTLFu2rPL3Jka7wi0lSPvSZbcrMBIWiol+MJ2phWSoBwR+Muh+KYE5p+vC2ctPAJOR4sgvBugauy5KGYZg1FQpGut4nD/Z/RtDkvcELE9eCeXlFN4duRsGVAqvMvA2BN/5P7BiFxT9/DDqLqb2ujBkhXIo/Me2pMpRzgLKWVoea4sPwNyQe0u59NrKmx12eyZIiYgF4yJyOu3eolBKd1NK7wUwFEABgN2EkCOEkD8RQvpsUDAQaDatW/SoC5QaBtu+0mHfVj1sVgrZWG8QmQDmiw2AgIH5Yj1AgX3Sn+Eu9cW4wNnttpufaQFhgODI3ns7q8vt1y73XhSk+tIjsGpLoIle5LA2KaVgBGLIfUc4rE0nXaPPBWmd2emw66RdBg0aZL7jjjt0fXU+X19f25IlSxr66nw3I7eUIB3IyCf5gYgY6HeXQDUzCAIvKXQ/F8NSoO1SO66eLEZNkcJmA/Zu1WPvj3qkHzehrNAKs7FzAjUoQgi/EAFO7DPC0oN1qZ5yfzyZ/A5SfCbj18JNWHvmFTSau75GtrcQq0MQfOf/oPAfhcpjb6D88F/B2/rONEcdMQdu8fcDADiLDg1Z36Dq5Hso3fccqtI+RGPeDpjrc0D5m9cQyVZhABhA4NHz9D3WTexcQ3oLQwhxA/BHAA8COA3gA9gF6q5+7Fa/oXFnseAhFYaMliD9uBmbPm5CfRMgv80HthI9qImD6UI9OBGPTOU5zI58CAKmbbFpMVMU51rhHyKEWNp7t/Wacg5KFwYSWe+doz5zI1iJK1RBkx3SnkVbioqjr/8u1/cPJBgXEUD6RpDyZg7UYHNGSJ04uYlwCtI+glUKIRvrA8NvVeB0VihnB4N1k0C7rQjW4q5N0ri4shg3XYaYIWLIFAQleVakHTThl+/02LdVj6Z6e6SyvYggIQSjp8pg1FOcOtwzwy8RK8bCmCewOGY5ipsuYeXx5ciuO92jNh0JK1LCf9IquA9eisZLP6Dw5wdg1Vf2Qz8U8B33BtwSH4LcbzR4qx5NedtRlfY+Svc9j6q0VWjM237TlZKxVhgg8JA6xDhC4C6BzRkhvSUhhPwA4CAAGYCZlNJZlNKNlNInAPxuC4WzAoIx02SYdb8CRgOPjR83odjNvaXci/F8DQq9ChDjmYwYt/bXwhVmW8BxQGhM7wabqytsvVp/1KItha74ANSR80DYnr8WSikasr8Hb9WBlah73kEn3YawxJ4FU9f7pV/4hmaHXacgdeLkZsEpSPsQxVR/gFLofikBI2ahmhMMVi2Ctbxd87F2kcoZhMeJMHyiDLcvVGDM7TLEDBZDKieQyu3/1twLVuz/Sd+yVvRqV0cvfwHC40U4fdgEvbbnHiPJPhOxLOVdKEQq/OfMX/Fz3v/A04GRwksIA48hj8Nv4nuw1Ocif+vdMFT2vWhmRQrIPAdBEzUf3iNehO/4f8F90MOQ+48BbzWgKW8HbPoKAPaBWWPuNnCWrkXQ+xpHOOw2w7pJwNU6a5HeoqyilMZSSt+glLZyPextQ6WbgaAIEe5+3AV+IULs/dWGGi9XmE5Vg9ZZUehbgFkRD7Z7LMdR5GdZ4enLQqnuPbFotVA01PC96rDbkP0tQAg0UfMd0p6pJh3m+iyoQqeDFcod0qaT7sNqxH0SIW0p+eLqLPnixMnNglOQ9iECdwmkw71gOFAOXmcFIxXAZWEYZMM8AaDbA3GGIdB4sAiPtwvUZgdeqcK+vdng4uR+E/b/pMf5EyaUF1mRPE4CngOO73VMWSRveSCeTH4XSd4TsbtgI9aeXoEmc51D2nYEqqBJCL5zAxiBDIU//x/qs77t1/6wQjmkHonQRM6D94gX4Tf+TUhc7Y56lqYiNOXvbNnXUHkKjbnbYKrLBs/1XXHxG0F5ClulAQIfx5RQaK5FyjcOjNfnxKHEEkLUzQ8IIRpCyGP92J8Bh0zBYNZ9Coy5Q4YcsxzNXsQ+STFwk3q3fyAFQqNFCI/r3cF3bSUHSgF3b0GvtM9zFjRkfw9FwHiHOKNT3oqG7B8gkHtD4TfGAT100lP6TJBejsI6U3adOLl56J07i5N2UU4LgPFoJXR7y6CaGQQitM8J2KqN0O4ohvKOAAg8HDPA9wsWwi/4StqTuzeLqlKKohwr8rOsIAA0niwunDTDP0SAoEgRROKeuTOKWQkWxy5DmCYe32d9hJXHl+HeuGcR4Tqoh6/GMYg14QiZ+RVK97+AiiN/g6k2A97DX3RIelhPYYRXIo0Kv5GQeQ0BI7CvzTQ35kNXtA/I3wEQAUSqQEg0ERBrwiFU+IERKXut7mB7cLUmwEYdGiEF7E67zoHELcdDlNLVzQ8opfWEkIdgd991chnCEAwZJYF3hg215wywsUaMSZxzw2NYAUF4fO9Hgmoq7IZGvRUh1RbsAmeqhyZ6sWPaKz4Am7Ea7oMfA2F6t26qk87BasR2o65epln0MrdYyu6nb9bDoHNcBpFMQfB/L2g63G/z5s2YO3cuMjIyEB0dDQAoKChAQkKC7PXXX/f8y1/+UgUA999/f2BycrL+ySefrJ03b17wwYMHVYWFhelSqZSWl5cLkpOTY0pLS9Ovbf+tt97yWLdunQfDMJDL5dwnn3xSmJSUdMP1Oz/99JPy2WefDbDZbESj0dhOnDiR1fyczWZDQkJCrLe3t2Xv3r05bR3/wAMPBCxYsKD+jjvu0P3zn//0+Pjjj72Ki4vFZWVlZ318fGwA8NFHH7m+99573gAgl8v5NWvWFI4cOdIIAK+99prnf//7Xw9CCKKjow0bN24skMlkdNasWSHnzp2TC4VCOnjwYP2GDRsKxWIxfeWVV7y++eYbNwDgOI7k5eVJysrKzri4uPBjxoyJPHr0aJZQ2P/j0P7kloqQDtSyL1cj9JdDMsgV+t0l4M1XUlqJmAUjE7QI1N4gNEaEEZNlmLZQgdFTZYgcJIJ/iAAgwIHtBvzyjQ7nTzpmDV+KzyQsS14JmVCFT86swPbc9TDZup6a3BuwYhUCJv8bbgkPoCHrGxT+/CBshpr+7tZ1NItRANBEzoPfbW/BffBjUAZOACiPpoJdqD69GmUH/x/KDryImnOftuxv0ZaCMzf1av9aSr44SpC621+v02n3loQlV82YEEJYAM58unbwnBeIw7efwfejD6Cppv154/pqDqX51lbLMXqL6nIOYgmBUt0796j6zI0QqYIg9x3e47Y4ixZNeT9D4hYHqXusA3rnxBGwrmJQEwfe2LtO81y9GUQuACO+tSYiHClGu9JeamoqxowZg9TU1FbbXV1dsXbtWk+TydTmbDjLsnTVqlVt16m6igcffLA2Ozv7YmZm5sWnn366Yvny5QE32r+mpoZdtmxZ4NatW3NycnIubN68Offq519//XWv8PDwdlP/Kioq2LS0NHmzy+748eN1u3btyvb19W2VnhUeHm4+fPhwVnZ29sWXXnqpbOnSpUEAkJ+fL/zkk0+8zpw5c/HSpUsXOI4j69atcwWAe++9ty4vL+98VlbWBZPJRN5//313APj73/9emZmZeTEzM/Pia6+9VpKSkqL18vLiJBIJHT9+fFPz8b9nbilBOlDLvlyL4o5A8DobDIcqWraxKhFU80LAqsWglILX957zKsMSuHqyiEwQY9x0OVLGS2DQUXj4snDztF/AeY6C53p28fNWBGJZyrtI8p6APYXf4h9HHsSu/K9htPaZ03a7EIaFZ/Jy+I1/C6a6DORvXYzKSxexY6MOX7zTAIOu5+tqHQ0jkELqHgt1xGx4DXsWfre9BY8hf4Y6ch6knkMgkFyZ6axN/wz1WZtaHjdk/wBt0V6YajPBmRsdUgKnsyVfeKsBFm0JzA15Nyx502zR7xSktyQ/A9hICJlECJkEIPXyNidtwKrFsLg3gYMQRTnt3wuKcq24kGZGX5Q6rrlsaNQbmRim2kwYq85AHb0QhPR8WNKYuw2UM0MdOdcBvXPiKPqq9IuzBqnj0Ol0OHToED799FN8/fXXrZ5Tq9V0zJgx2tWrV7u1dezSpUurPvroIy+r9cbjWVdX15YBl06nY5uvMa+99prnggULggHg+PHj0oiIiDitVsusW7fOdcaMGfUREREWAPDz82sZWOTm5gp37tzp8tBDD7UbZdiwYYNm0qRJLTP2o0ePNkZFRV23VmjKlCn65rqhEyZM0FdUVLRMonIcR/R6PWO1WmE0Ghl/f38rACxatKiRYRgwDIPk5GR9SUnJdROvqamprgsWLGhZzzZ//vyGr7/++ncvSJ0pu/2AOMIFonAVdDuLIR/v0+JQ2vwlNByuhCW7Aar5oWBVvR9EGDpGigsnzSjOtWHYBHu68MVTZjTU8hg5RQqW7f4AxJ7Cuxyj/Gdgd8FG7Mz/CvuLt2Cs/0yMDZgFmbB/DTZVodPAiUJx8NuTKFrvBkZgBMexOHPUhFFTHBP5o7wNlLeCsBKHDuYYgQQSt2hI3KKve04TvaglDZnnLNCX/wbeqr/qWBkEcm8I5d4Qyn0gVHhDqPQHK1K2/RooD95qAG/Vt/wY8xoAKYW2cgf4EgMU/mMgUvrDVJuJugv/hcfQxyFU+EJfcRINl8WxSBUMt4Q/QSC9/v7FiFkwKiFsNX1XmqcvaTLX41z1YYz0vQPs7y+F8AUASwE8evnxLgDr+q87AxvThTrIa4UQC+yCNGls28s4EoeLYYgT9ega3Rl4nqKmgkN8cu8M8uszN4GwEqjD26+z2lks2lLoSw/b16LKb7D21kmfw2rs4xmu3gyhb++ZTDkFqePYsmULpk2bhsjISLi5uSEtLQ1JSVccv19++eXy6dOnRy5btuw6ARgUFGRJSUnRrVmzxm3hwoU3TF184403PNasWeNltVqZXbt2ZV1uu2r48OFR69evV7/11ls+q1evLlAqlXx2drbEarWSYcOGRen1eubRRx+t+vOf/1wLAI8//njAW2+9VdLY2NjuTfbIkSOK+fPndyl3/MMPP3SfMGFCIwCEhIRYH3/88YqQkJBEsVjMjx07tumuu+5qlZJmNpvJxo0b3VauXFl89XatVsscOHDAZd26dUXN21JSUoznzp373buuOQVpP6GYHoi6VedhPFEN2UivVs+Jo1xgPl+Hpu/zoZoXClbZu3nlQhHBsAlS7P3RgPxMK0JjRHD1ZCEQEocNdAJVEXgg8WWUaHOxO38jdhV8jYPFP2JMwJ0YGzALcqHKIefpClYLxdmjJqQd9IDVMg2BXscQKH4TeeY3cO5ICAJk/4GQNYJyFlDeAspb7X9z1pa/eb7149a/raC8Bc3uJBK3WHiPfBlSj/hef20S18iWvxlWBN9x/wJv0cKqr4BVXw6bvgJWXQWM1eegLzsCAFCF3AGXsBngrQbUnv8CyuApkGgiYKrNQPXpNQBah2FI4XhAzkBbsB+MUA6pRwKg9AcjUkLiHgtcrpkocYuBW8KD4K06NFzajMpjb8I17j5IPRKv6zfrJrlla5H+nLcBx8t3oclch+lh9/d3d/oUSikP4KPLP046wHC0CmqiQlOgDWWnbbBaaItZXTM8T8EwBHJl768db6jlYbMC7j6OHzJwFi0a836CKvQOsOKe3wd4mwEiZQBUoXc4oHdOHMmVCGnvGtdx9WYIg9ueXHXSNVJTU7Fs2TIAwOLFi5GamtpKkMbGxlqGDBmiW7t2bZsRvhUrVpTPmTMnfP78+TcUpC+99FL1Sy+9VP3xxx+7vvrqqz7ff/99AcuyWL9+fX5ycnLcvffeWz116lQ9ANhsNnLu3DnZwYMHs/V6PTNixIjocePG6S5cuCBxd3e3jR071vDTTz+1+wGorKwUenl5dTpvfOvWrcoNGza4HzlyJBMAqqur2W3btqlzcnLS3dzcuBkzZoSuWbPG9bHHHmuJev7hD38IHDFihG7atGmtUgK//vprl6SkJJ2Xl1fLmj2BQAChUEjr6+sZjUYz8NLz+ginIO0nJAmuEPjJod1RDOkIz1aRM4GHFMo5wdD+UICmH/LhMj8UjKx3/1WxQ8U4c8SEI78YEBwphG+QEL5B9ufqqzmUFVoRM0QMpocC1V8Zhj8m/j+UavOwu2ATdhdswsHirRjtPwPjA+ZALup9YcrzFJlnLPjtVwP0TRQh0UKMmiKDxn0Kqk5egPn0eyi1fYzzJywI9dgKwopAGCEIIwLDCgFGCIYVgbAisEIFiMT+HGGbf1/en72yHZSiIetbFPx0LzTRi+CR9ES70cjegBACVqwCK1a1EquAfUBo1VeAFdtT3TlzI3iLDpSzp9kIZJ5QhUwDI5S3/LBCOWq3lUAcr4Zm0l2tPr8ipR9cY+9teSyUeUAo8wAAiF2jUJv+GWrOfgJF4ASow2eDMFc+2wJ3CSxF/Z/S7WhMNgPOVB2EmJViT+G3CHKJRpz7sP7uVp9BCIkA8AaAWAAti6MppaH91qmBDMfDIrDAxUUBHQeUFlgRHHklW8Zk5HFgmwGJwyXwDuj923hNuX3s5u7t+Mh+Y85WUJsJmuhFDmlPoomAeNhzfW7y5qRjmuuC9mbKLrXy4JuszgipA6irq8OePXuQnp4OQgg4jgMhBG+//Xar/VasWFGxcOHCsBEjRlxXpy4hIcEcGxtr+PLLL1vWFD3xxBN+u3btcgGAzMzMi1fv/9BDD9U999xzgc2PMzIyJDKZjK+oqGiJzPj7+1vc3NxsKpWKV6lU/PDhw7UnT56UpaWlyXbt2qX28/NzMZvNjF6vZ2bPnh2yZcuW/KvPIZFIeKPR2Km1AceOHZM+9thjQdu2bbvk7e3NAcDWrVtVgYGBZl9fXxsAzJkzp+HIkSOKZkH6zDPP+NTU1Ah27tyZe217mzZtcl24cOF15SesViuRyWS/65p3nbqTEUKWAfgcgBb2NKshAF6klP7Si327pSEMgXJaAOo/zYT5XB0kg1qnMAq9ZVDODkLTZrsoVd0VAkbaewMPhiUYOUWG7ak6ZJ2zIGbIlYt5TYUNeZlW1FVzGDpGCrmy52t8/JSh+EPCiyjXFWB3wSbsLfwOh0p+wii/6RgfOAdKkbrH57gWSikKL1lxZKcRtVUcvPxZ3L5A1sqJ2GvYs/BM4VGxXoeyigcxZeGzEAgdM7BxjbsP1adWoz7zazQV7obXsOegCpnW7wMnVqRsJY6FCh94DX++5bFA6gaXsBmtjuENNvBNBRD6ds3dVyjzgFfK02i4tAW6or2wNOTBLeGBlhRe1k0M7nQNKE9BmFtnQHm26hAsnAmPDHkdW3M+x9cX38PylPduXM7j1uJzAK8CeA/ABAB/wi3mYeBIqI3CIjBB4+IFkxAoutRakBZmW2ExUShc+uYtrK7gwLCAq4djBSmlFPWZGyFxj++x+RDlbdCVHILCb/SAcE13cj1EyIBRCXtVkHINl2uQOgVpj/n222+xZMkSrF27tmXb+PHjcfDgQQQGtmhGDBkyxBQREWHcvXu3S0pKiv7adl599dXy2bNnRzQ//vDDD0sBlDY/Tk9PFyckJJgBYOPGjS5BQUFmAKitrWWfeeaZwD179mQ++uijgZ9//rnmT3/6U/38+fMbHn/88UCr1QqTycScPn1a8dxzz1U+8MAD9atXry4F7C687777rte1YhQAoqKiTNnZ2WLYNU27XLp0SbRgwYKwzz77LD8xMbHlQxscHGw5deqUQqvVMnK5nN+zZ48yKSnJAAArV65037Nnj8vBgwezWLb19bK2tpY9fvy48rvvvmvVp4qKClatVtvEYvHvWpB29m72AKW0CcBUABoASwD8q9d69TtBOswDrKsY2h1FbT4v9JVDNTMIXIMFTT8UtHLl7Q1CY4TQeDBIP946ZTIiQYzkcRLomygObDegrNBxhks+imAsiX8ezwz7EHHuw7C/6Af888hD2HrpMzSZHWcPX1Vqw+YvtNj6Xx1sNoppixRY8LCqlRhthhAGSWOlMOgoMk477sbJipTwHvEigu/8H4QyT5TtfwHFvzwCS1Pb//+BTE8cdgkjhCZqPtwSHoTNUI2qtFUtZkesmwSwUfBNt1Yt0mNlv8BLHoAwdQLuj38BALD+/JuwDpCasn2AlFL6KwBCKS2klP4VwIwOjvldQikF5XhYYIZUKIVvsBCFVxkbcTaKgiwrvPwFUKj6RpDWlNvg5nmlprWjMFScgKUx3yHRUVPNBTRkfwtzQ5tVHpwMEFiNGFxdLwrS+mZBeuuZeMsUjv3+ddReamoq5s5tbQw2b96869x2AeCVV14pr6ysbPNNT05ONsXFxbVbZmHlypWe4eHhcdHR0bEffPCB1xdffJEPAI888kjAgw8+WJWYmGj+8ssvC1599VW/0tJSwdChQ02TJ09ujI6Ojhs6dGjMkiVLqlNSUjq91mfWrFmN+/fvb5mFf/311z29vLwSKysrRYMGDYpdtGhREAC8/PLLPg0NDYInnngiKDo6OjY+Pj4GACZOnKifOXNmfWJiYkxUVFQcz/Pk6aefrgaA559/PqimpkaQnJwcEx0dHfvss8+2FFX+3//+px47dmyTSqVqlZa7Y8cO1eTJkwdueZA+gnTGbZMQco5SmkgI+QDAPkrpD4SQ05TSIb3fxa6TnJxMT5482d/d6BS6X0vR+FUO3F8cDHFE2+7AlgIttD8VQuAhhWpuMIio9wxRzh414cB2AxY/qoKHb+uIrEHHI+2gCQ21HIIjhYgdKnb4AKVKX4LdBZtwuvIAWEaAkX7TMCHwLqjE3TMga6zn8NsuI7LTLZDI7Gtl45M77jelFN980gSjnmLJMpcepypf1z7PoT5zE6pPrQLlrXBLfBBuCQ+AYW+Om6jhSCXqP82E5z9SIOxB2RebsRY2QzUkbtGglMJ0rhp1qzLg/tJgiMMHtlt2ZynXFeDd409iVsT/YVyA3bTlQs1xfH7udYzwvR3zox/v1/4RQtIopcm9fI4jAMYA+BbAHthnx/9FKY3qzfN2hYFy36AcRfWHZ7FZ9T9ETh4FdckdOLjDgD884wKVmkXhJQvOHTNj1BQp3Lx6P12XUopP32xAcJQQk+c61oSuZO8zMJQfR/jCXa3KXHUXi7YEIqW/A3rmpLeo/fA8bDUmeL3WO5ccw7Eq1H+SAc+/J/eqcVJfkJGRgZiYmP7uRrucP3/eEB8fn9Hf/egOSUlJUTt37sxxd3fv3UhPJ5g6dWrYO++8U3J1FPZW4uzZs+6DBg0K7mi/zk6vphFCfgEwHcBOQogSwO924a0jkY3xBqMQQLejuN19RMFKKKYFwFZlhG5vWa/2J3qwCAIhkH7i+u+FTMFg9FQpwmJEKMi24vBOA3RNjv0YeMr9cU/c03h+xGoM9hyDwyU/4Z9HH8Lm7E/QaK7tdDtGA4+DO/TY8EEj8jItSB4vwR+eUmPQCEmnRDQhBEljpWiq55FzwfFRLMKwcI29G6F3bYEycCJqTq9B/uZ50Jf95vBz9QbWCgPAEgjcezaIFEjdWlyCdcX70VBmn3nlam+d6/Kxsl1giQBJXhNatsW5D8PEoHn4rWwnTpbv6cfe9RnLAMgAPAkgCcB9AP7Q0UGEkGmEkCxCSA4h5MU2ng8ihPxKCDlHCNlHCPG/6rm3CCEXCCEZhJBVpL9z4zsLT8FTHhzLQcJKERhuz+IoyrGCUoq8DCvUrgxcPfvGqdmgozDqKTy8HSt+rYYqaAv3wCViTo/FKGexrzt3itGBD6sW927Kbr0zZddJx7z99tslubm5/R4BMJlMZNasWQ23qhjtCp0VpP8H4EUAKZRSAwAh7GuAnPQQRsxCPskPprO1sJZcl3rfgjjcBcrpgZCN8mp3H0cgljKITBQj66wZZtP1YpNhCWKTxEi5TQqjnuLgdr1DU3ib8ZD5YXHscjw/fA2Geo3HkdLt+OeRh/B91sdoMFW3e5zNSpF20Ij17zXi7FEzogeJsGS5GiMnyyCSdG08GhptT2E+ecDkkLqdbSGUecLvtrcQMPUjUMqjaOfDKN3/EmzGzovv/sBWYYDAXdJSssgRCKRuEPnY15LeKk67Vs6CtIq9SPAYeZ1h1+0h9yFMnYDvstagXFfQPx3sAwghLIBFlFIdpbSEUvonSuk8SukNZ18uH7cawB2wmyHdTQi5dqHhOwDWU0oTAfwNduMkEEJGARgNIBFAPIAUAOMd+bp6C2rjwVMOlPAQsVJoPBgoVAyKLllRWcpB18QjNFbUZ2vPq5sNjXwcK4Absr4DKAdN1MIetWPVlaH80CswVJ5xTMec9CqsqwhUb+u1JUhcvRlEwvaq54aTm5+JEyfqhw8fbuzvfkgkEtpcsub3TmdHkyMBZFFKGwgh9wF4GcDvPt/ZUcgn+oGIGWh/bj9KCgCiMBVYpQiUpzCdqwXlekckxaeIYbMCmWfajwx6+wswboYMKg0LphfNZ9xlvlgY8yReGPExkn0m4reynXjj6FJ8m7kGdcaqlv143r7e878fNOLIL0b4Bgpw9+MqTJqr6PY6K8LYo6S1lRwKLzledF+Nwm80Qud8B/dBS9FUsBO5389CfeYmUDowExFs5QYIfBxTp7UZqUcC3AbfB0YhhLWyAfXZ37U4/d6snK8+CqNNh+G+U697jmVY3Bf/LKQCBb5M/xeMtvYnpG5mKKUc7Om6XWUYgBxKaR6l1ALgawDXFqqMhT0FGAD2XvU8hd3NVwRADPskamU3+tDnUI6Cpxw4hoNYIAUhBIERQpTk2ZB70QypjMCnD5x1m6kptwsHRzrsUt6KhuzvIPcbDZEqoPvtUIr67O9BGCHErhEdH+Ck32mOXPINvRMQctYgdeLk5qSzI/WPABgIIYMAPAMgF8D6XutVNyGEzCSEfNLYeHNpZVYhhGycD4zHq2DrRGTIWqKHfl8ZrIU3NAjrNl5+Anj6sTh/3HzDyKBUzmDUVGlL2YGSPCt0jb0joNyk3lgQ/We8OGIthvlOxony3fjXb0vxyZlX8V1aKj794gR2/dAAmZxg7p+UmLlE6ZD1VZGJIihcGKQd6P2IHSOQwGPo4wid/R0krtGoOPo6CrYtgak2s9fP3RUoT2GrMkLgLe2V9ll3CayV9dAV7UXliXdg1betI6iN77XUL95mdMhkwG9lv8BV4oUwTUKbzytFGtwX/xzqTBXYlLGq1yLxA4DThJAfCSFLCCF3Nf90cIwfgKtn6Uoub7uaswCa25kLQEkIcaOUHoVdoJZf/tlJKb051jrZePCUB8/wELP271hgmABmE0VZoQ0h0SKHr2m/EdXlHFQaBmKJ47IhtEX7YDNU9djMyFRzAea6TKhCp4MV3tzrBX8vXKlF6hSkTpw4uUJn7zA2ah8pzQbwb0rpagADruowpXQrpfRhF5ebzwxFMdW+9kX3S0mH+4oCFVDdFQphiP1fQHnHD2ITUiSoq+ZQVnjj2sHNaWOczR6hzD7fu2nwrlJPzIt6DC+NXIskzXSUVFTjaGMqsoJfR+ltj6Fu+Ju4gG9wqe4sLFzP+8KyBENHS1BWaOuV1OS2EKtDEDhtHXzH/RNWbQnyty5G5fG3wVkHRgSNqzUBNtoth93OwLqJAZ0U7oMfBWduQOXxt6AvP9FqH8pT6HYWo3FTLnhjp+tb3xBzfQ4acn5E5bG3ULrveZQdeAm157+EvuJkt977GkMZchvSMcx3ChjS/qU2VB2H6WF/QHr1URwo3tL1fjde52o/EJEAqAUwEcDMyz93OqDdZwGMJ4Schj0ltxQARwgJBxADwB92ETuREDL22oMJIQ8TQk4SQk5WV7e/FKAvYZQi6GYxqHCrgOSyIA0Is68jNRtpy5rSvqKmwgYPB6fr1mduhEDuA4X/df+STkN5Gxqyv4dA5gWFf3cC8E76A6ZFkPaOw7hTkDpxcnPSWUGqJYS8BHu5l22EEAb2FCgnDkLgKoFsuCcMB8vBaTsWPkJ/OQghsNWY0LDhkt1kxoFEJIgglhCkH++cqGMFBGPvkCE+2W5OYTTwsFl7L9ojsrmhfus8BJz6BxaIP8X9sS9hVMAdMHFG7C7YhLVnXsErB+7Gv9NewPbc9ciqPQWTrXvvUWySGBIZQdrBvlvXSAiBS9idCLtrK9SR81B34b/I+342mgp29XsUzVbe/ZIvnUHgLoGt1gyJWyy8hr8IkcIfdRe+RN3F/4HnLKCUQv9rKSy5TZAMdoduZwnMWQ1dPo/NWAtD5amWx41526At/BWEFUEVMg0StziYajNQd/4LlO1/EZUnVkJf0XkX1uPlu0HAIMVnUof7jg+Yg3iPEdiW+wXyGy7ecF9T/SU0FVwpAa0t3DtgU7ububxu9NqfBzo4rBTA1fmc/riqdt3ldssopXdddnz/y+VtDbBHS3+7vG5VB2AH7EtPru3XJ5TSZEppsoeHR/dfoAMhLIFJZYZVaIWItV9PJTIGXv4shEICoajvoqMWM0VDHQ93BxoamRvyYCg/Dk30AhCm+0JXV3wQNmMV1JHzQBjnesGbhd6MkFKOgm+wgHXtd6+aW4rNmzeDEILMzCvZWgUFBUhISJD94x//8Gzedv/99weuWrXKDQDmzZsX7OnpmWg0GgkAlJeXC/z8/NpMFXrrrbc8IiMjY6Ojo2OTkpKi0tLSOnQ5++mnn5TR0dGx4eHhcSkpKa3c2m02G2JiYmInTJgQ3taxWVlZIolEMjQmJiY2NDQ0LiEhIaa53/3Fiy++2OWi5A888EDAjh07FADwz3/+0yMwMDCeEJJUXl7eckH86KOPXCMjI2MjIyNjhwwZEn306NGW1LbXXnvNMzw8PC4iIiJu5syZIQaDgQDArFmzQoKDg+MjIiLiFixYEGw2mwkAvPLKK17R0dGx0dHRsREREXEsyyZVVlayJpOJJCcnR1mtPQvadPYqvgjAPbDXI60ghAQCeLtHZ3ZyHYo7AmA4Ugn9nlKoZgd37iAGAE/R9F0+FJN8IY7WOKQvQhFB9BAR0o+bYdDxkCk6nruQyOz7UEpxcr8JnI0iaawESnX3Bh2UpzCbKcxGCpPx8m8DD7OJIj/TCpsVWPSICmIpgVTmjkRv+3jTaNOjoCEDuQ3nkddwHvuKvseewm/BEAZ+ijCEauIRqo5DiEssZMKOyxgIRQSDRkhwbI8RNRU2hw7OOoIVq+Az6hW4hM9CxZG/o3TvM5D7j4X3iJf6zVHSVmH3AXD0GtJmWDcJYOXBN1khcNHAI+lJNOVtR1PBLzA3FECumwdrphXS4V6QDvNA07f5QCeyBHirAaa6bEjd40BYIfSlR9BUsAsStxgwAik0MXeDFSnBCK6kIlPKw9JUCFPNRZhqLoAzN7a01XBpC5SBt0Go8LnuXBzP4UT5r4hxT4aLuOP7HCEEi2KW4YMTT+O/59/CU8Peg1KkAW8zw9yQC3P9JahCpoERiGGuy4a2aB+UARNAWCE00QsADGwDWULI57Cv62xFB6L0BIAIQkgI7EJ0Mez3oavbdQdQR+2K/CUAn11+qgjAQ4SQN2B/c8YDeL+HL6NP4HRWMBfMkJilEF/+LHI2e2T05H4TTEYeEmnf1B+trbQBFA6NkNZnbgJhhFBHzO1453bgLDo05e+AxC0WUvdrfa6cDGQYMQsiE/SKIOUbLQC9dR12/3rofugsDQ5rTyFS469jOl59l5qaijFjxiA1NRWvvfZay3ZXV1esXbvW85lnnqmWSCTXXd9ZlqWrVq1yf+GFF26YfvLggw/WPv/889UA8L///c9l+fLlAQcPHrzU3v41NTXssmXLAn/++edLERERltLS0laDstdff90rPDzcqNPp2r1wBQQEmDMyMi4CwMWLF0V33XVXOKUUy5Yta2UwZLVaIRT2fvxt1apVPv/6178qOrt/RUUFm5aWJv/ss8+KAWD8+PG6efPmNU6cOLGVOA8PDzcfPnw4y8PDg9u0aZNq6dKlQefOncvMz88XfvLJJ15ZWVnnFQoFnT59eui6detcn3zyydp77723bvPmzfkAMHv27JD333/f/YUXXqj++9//Xvn3v/+9EgC++uorl1WrVnl5eXlxl8/ftG7dOtdHH320rrvvQafuapTSCgD/A+BCCLkTgIlSOuDWkN7sCH3lkAx2g+7X0k470AlcJXBZFAaBtxS6X0qgP1zhsAhafIoEPAdcPNW1GwchBNGDRbCYKQ7uMLSUK2iG5+zCspmqMhvys66k75z9zYRd3+mwLVWHXd/pcWC7Acf3GnH2NxOyzllQnGNFcZ4V4fEiqN0ZHN1lwOkjV6KXElaGGPdk3Bn+RzyZ/A7+PjYVDw9+DROD5kPACHGoeCs+P/c6Xj14L1YeX4bN2f9BetUR6Cztrz1OHCGGUASc6sMo6dXIPAchZNbX8Ex5FoaKk8j74S7UnPu0X0x/rBUGMAoBWEXvXKTZy6VkuFr7e00YFi7hM+Ex5DHw2Uo0HToLEtwE6TAPeyR5QSjEMddPxFCeg7khH42521B54l2U7n8BtenrYG7IAQC7sB/1SosAFco8W4lRACCEgdglBC5hM+A1/HkoAyfa3wN9BQyVp8Db7OLc0lgIbeFeWPWVoJQis/YktJZ6DPeZ0unXLRXIsSTuWRisTfjyxEuoOL4SpftfQM2ZNdAW7YVVby/5pAyaCL/xb4Cw9vefFSn7zHG1B/wEYNvln18BqADobnQApdQG4M8AdgLIALCJUnqBEPI3Qsisy7vdBiCLEJINwAvAPy5v/xZ2r4N02NeZnqWUbnXoK+ol+HozpCcJ5EY5xKwUNivFr5v1EIkJKAVKch2Tot4Zqi8bGnn4OGYSjrca0JjzI5TBUyGQdj8g0ZS3DbzNBHVER8uQnQxEWFcxuDrHC9JbveSLI8VoZ9vT6XQ4dOgQPv30U3z99detnlOr1XTMmDHa1atXt/llXrp0adVHH33k1VHkzNXVtWVAqNPp2Ob72Wuvvea5YMGCYAA4fvy4NCIiIk6r1TLr1q1znTFjRn1ERIQFAPz8/Fouirm5ucKdO3e6PPTQQzUdvrjLxMbGWt56663ijz/+2AsAnn76ad85c+aEDB06NPquu+4KycrKEo0YMSIyMjIyduTIkZGXLl0SAfYo8D333BMYHx8fExwcHJ+amuoCAAaDgcyfPz84MjIyNiYmJnbr1q1KAFi1apXb/fffH9h83gkTJoT/9NNPyscee8zPbDYz0dHRsbNmzQppampibrvttvCoqKjYiIiIuP/85z/XDXA2bNigmTRpUlPz49GjRxujoqKuy4OfMmWK3sPDg7t8Pn1FRUVL+gDHcUSv1zNWqxVGo5Hx9/e3AsCiRYsaGYYBwzBITk7Wl5SUXJdykJqa6rpgwYIW8Tl//vyGr7/+2rWz73lbdOouQwhZCHtEdB/ss80fEkKeo5R+25OTO7kexR0BMJ2pheFAORRTOhcBY6QCqOaEQL+/DKa0anB1Zihv9wcR9WxW29WDhX+IABdOmDF0jKRLbroePnYX3tOHTDj7mwmFl1jwPIXZQGEx28Xp9HsUYBiCyhIbygpsCImyf+ZlCgaevgKIpQRiKYFESiCRMi2PT+43IjfDiuRxEoACMUPFEIntfTMZeBz+xQifQAH8ggV2Mw6BFJGuQxDpOgSAvRRHUVM28hrOI6/hAo6V7cShEvtY1UsegEjNYEwImgeV+Mp3SyJlEJ8iwZmjJgyfzMFF0zc1AK+GMAK4xd8PVfBUVB57E9VpH6Ax50eoI+ZCGTgBIpegPumHrcLQa+m6ACBwswtSW40JotArpVJosQfE9WNhDc6AINHcSoRRSgEKcOY6mGozYKrLhLkuG7zNAIBApAq6nIYbA5HKfj8QSNRd7lvzOcXqUPiNfwMg9s+BqS4TjblbgUvfQSD1wEFSCaVAiSjNoA7b5Cxa6MuOwlx3CbQhBxN4FXaZy3CIZzE5cCokrlEQqUPBsPbvx7Wi+WaAUvrd1Y8JIakADnXiuO0Atl+zbcVVf38Lu/i89jgOwNLu9rc/EfjJUTSrBnWltRCxEtjMgE+gAL7BApzYb0Jhjn0yri+oLucgkRHIVY6Z8GjM2w7equuRmZFVVwZdySEo/MdBqOhylpuTAQCr6Z1apLe6IO0PtmzZgmnTpiEyMhJubm5IS0tDUlJSy/Mvv/xy+fTp0yOXLVt2nQAMCgqypKSk6NasWeO2cOHCG7qNvvHGGx5r1qzxslqtzK5du7Iut101fPjwqPXr16vfeustn9WrVxcolUo+OztbYrVaybBhw6L0ej3z6KOPVjWXTnn88ccD3nrrrZLGxsYuDdJGjRplyM/Pb0kVvnTpkuTYsWOZCoWCTpw4Mfzee++tfeKJJ2rff/99t0cffTRg9+7duQBQXFwsPnv2bMbFixfFkydPjpo9e3b6m2++6UkIQXZ29sXTp09Lpk+fHpGbm3u+vXOvWbOm9IsvvvDMzMy8CABffPGF2tvb27pv374cAKitrb3utRw5ckQxf/78+q68xg8//NB9woQJjQAQEhJiffzxxytCQkISxWIxP3bs2Ka77rqr6er9zWYz2bhxo9vKlStblQDRarXMgQMHXNatW1fUvC0lJcV47ty5HjnLdXba8y+w1yCtAgBCiAeA3WhjIOCkZ4jDXSCKdIHulxLIJ/h2us4jYQnkE3whcJNAf6Acjd/kQXlnEFiXng1c4odJ8PNGHYpyrAiO7FpbEimDEZOkyLloRWWJDVIZA407gVhCIJHZZ/sBIGaIGHFJV24gETcYbFlMFGd/MyMkWtiSOusbdCVSZ7VSKF0Y5GVYkHvRArmSgW+QXZw2pw4LWRHCNPEI08QDAGy8FSXaXOTVn0de4wUcKd2B4+W7MTXkbozxvxPs5fVJg0dJcPY3E04fMuG2mf3n6ChUeMN/0nvQFu1D9ek1qDq5ElUnV0KkDoMycAKUgRMgcY8DuYGRTk+wVRghSejRRNgNYd0urzG6ynHadLEehgPlEEe6wXXaIhDG/tpMtRngGwQw7bJCOkGFmuJ/2dsQayD1HASJWwzErlG94sB59bo1VcjtkHknw1RzEVXVachtSEMSVaHiwP+D2DUKUvdYSNzjIJC4gvI26EoOQSj3gsQtBpSzoDHnRwjlvpD7jcY410g0Vu/BbxV7EKvxRaxbtMP7PgCIAODZ4V6/QwhDYBQYIBJKwBAGIgmQMMw+TgoIFaD4csZJX0TF7UsUWIeci1KK+sxN9u+DZ8cTNe1BBDLIfUdCFTa9x31y0j+wGnGvVAlwClLHk5qaimXLlgEAFi9ejNTU1FaCNDY21jJkyBDd2rVr2xwUrFixonzOnDnh8+fPv6Egfemll6pfeuml6o8//tj11Vdf9fn+++8LWJbF+vXr85OTk+Puvffe6qlTp+oBwGazkXPnzskOHjyYrdfrmREjRkSPGzdOd+HCBYm7u7tt7Nixhp9++qlLxqvXZhZOmzatQaFQUAA4ffq0fMeOHbkA8Oijj9a99tprLdGiefPm1bEsi4SEBHNAQID5zJkzkiNHjiieeOKJKgAYMmSIydfX15Kent7huthmhg4davzLX/4S8Oijj/rNnj27cdq0addlE1VWVgq9vLw6nS6zdetW5YYNG9yPHDmSCQDV1dXstm3b1Dk5Oelubm7cjBkzQtesWeP62GOPtUQ9//CHPwSOGDFCd+35v/76a5ekpCRdc7ouAAgEAgiFQlpfX89oNJpumVp0VpAyzWL0MrXovCGSky6inB6A2vfPw3CsCvLRnZ8BJoRAMsgNjEYM3fYiNG7MhXJ6IIT+3R+Mh0YLIVPYzY26KkgB++AqIl50Q5EpEHZ+sJN+3ASzkSJlfNtRIqULi2ETpLCYKSqKbSgtsCLnvAWXzlugVDPwCxLAN1gIufLKx1fACBHsEo1gl2hMxHxUG8qw5dI6bM35DMfKdmFO5EOIdB0MhYpB9GAxLp4yY9gEaafW1fYmysDboAy8DRZtKXRFe6Et2ova9M9Re24dBDJPKAJvgzJwAuTew1rSO3sKb7CBb7T0WskXwB7xJ3IBuFr74IKrN0P/aymEAQoobvcHYZvXKvOoz/4OQok/iDUZtF4ITcw9EKtDIZB59Xkaq0DqBkXAWPzGlYM2AGOjl0KmLYex5gJMNekQSD3gM/pVgLDQFu6G1CMBErcYCKRu8B33BljRlfvnXNdolOoKkHpxJZanvAc36c0dCSKEaNF6DWkFgBf6qTsDGlu1EaqzYshdlair4kAphaunXRQGhguRe9GK+hoerh69m6XBcxS1lRwSh3d6HHVDjNXnYK7LhPeoFT36bgokarjG3tPxjk4GLKxGBL7JCmrjOz3p3hm4ejOIiAGRO02uHEFdXR327NmD9PR0EELAcRwIIXj77dYWMitWrKhYuHBh2IgRI66bZUhISDDHxsYavvzyy5a00yeeeMJv165dLgDQHBVs5qGHHqp77rnnWtJaMzIyJDKZjK+oqGgZxPj7+1vc3NxsKpWKV6lU/PDhw7UnT56UpaWlyXbt2qX28/NzMZvNjF6vZ2bPnh2ybNmyqsceeywIAF555ZXS5ORk47X9PHr0qCw0NLRlu1wu75SouvZadqNrm0AgoDx/pVmz2dzmhz8xMdF86tSpi999953LK6+84rd79+6md955p/zqfSQSCW80Gjv15Tl27Jj0scceC9q2bdslb29vDgC2bt2qCgwMNPv6+toAYM6cOQ1HjhxRNAvSZ555xqempkawc+fO3Gvb27Rpk+vChQuvWytqtVqJTCbr9prBzl4JfiaE7CSE/JEQ8kfY1wFt7+AYJ91EHO8Kgb8cup+Lu1XSRRSogMuiMBAJC66xZ2kxrIAgNkmMgmwrmho6t661t7BZKU4fMSEgTAAv/xvfcERi++Bt5GQZpsyTIz5FDKGQIPOsBfu26lscgDnu+vfXQ+aLBwetwAOJr4CjVnxyZgW+TP8X6oxVSBorAccBZ472z1rSthAp/eAadx+C7vgUkXfvg+/Yf0DqkYDGnB9R/MujyE4dj9J9z6Mxbwc4S89mpW2X3Zx7y9CoGbvTrv09ZjViKG73h/LOoFaDF0IYeCY/BVXYRLDuEtjKDFD4jYJQ7t1vayp5yuN42S6EaxLh5zcWmuiF8Bn9V3iPeBmamLsv95vAe8T/a5W2eLUYBexR/PsTXgQArD//Jqxc75RI6CsopUpKqeqqn8hr03id2LFVm6DJVEBGFbh4yowzR80tUr655EtRTu+vHa+v4cDZAHdvxwjf+syNYIQKuIR2L7JJeRvqLmyAVVfmkP446T9anHYbHHtd4+rNYNTim2FN/U3Bt99+iyVLlqCwsBAFBQUoLi5GSEgIDh482Gq/IUOGmCIiIoy7d+9us+biq6++Wr569eqWWdUPP/ywNDMz82KzGE1PT28JaW/cuNElKCjIDNhTVZ955pnAPXv2ZNbV1Qk+//xzDWBfr/jbb78prFYrtFotc/r0aUVCQoJx9erVpZWVledKS0vTv/jii7wRI0Zot2zZkj9x4kR98/nuvffe6yK1WVlZohdffNF/6dKlVdc+d/n16detW6cBgLVr17omJye3RAy///57DcdxuHDhgri4uFg8aNAg0+jRo3UbNmxwBYBz586Jy8vLRYmJiaawsDDLhQsXZBzHIScnR3h1iqtAIKDNbrYFBQVCpVLJP/bYY3VPP/10xZkzZ64bcEVFRZmys7M7TAW4dOmSaMGCBWGfffZZfmJiYosgCA4Otpw6dUqh1WoZnuexZ88eZUxMjAkAVq5c6b5nzx6XzZs357Fs6+t/bW0te/z4ceU999zTcPX2iooKVq1W28Rice8KUkrpcwA+AZB4+ecTSqlzdruXIIRAeUcAbGUGmM7VdnxAG7AaMdT3hEMSZ8+isFUau12vND5ZDALgwonerTHaERfSzDDqKVJu61p0TixlEBIlwujbZZg8V46hYyQtUdmju4w42464jHVPwbPD/o1pofchs/Yk3j72GE40fYOQWCD9mBlm08ArtcGKXeASPhP+E99D5N0H4D/5QyiDp0Bffhxl+19Adup4FO18BPWZG2HVV3a5/RZB2otrSAG7066twtBSzkgcqQYRXn+5YoVyiFSBEPrIYK0w9EpN3q6QU38OdabKVmZGhBAIFd6QuEa2bGOEHb9/blJvLI5ZjlJtLrZc+k+7+3FWPSjfd0Y33YEQMpcQ4nLVYzUhZE4/dmngwlHwlAdDRKiv4RAaLQS5vH5fpWGhdmP6RJDWVDQbGvVckNqMtdDm74RL+KxOffbbwqqvgLEmHTZTl5ZNORmA9FbpF3sNUmfJF0eRmpqKuXNbu2HPmzcPqamp1+37yiuvlFdWVrb55icnJ5vi4uLarbu3cuVKz/Dw8Ljo6OjYDz74wOuLL77IB4BHHnkk4MEHH6xKTEw0f/nllwWvvvqqX2lpqWDo0KGmyZMnN0ZHR8cNHTo0ZsmSJdUpKSldihIUFxeLm8u+zJ8/P+yRRx6putZht5mPP/646L///a97ZGRkbGpqqtuaNWta1lT6+flZBg0aFDNjxoyI999/v1Amk9Hnn3++iud5EhkZGbto0aKwtWvXFkilUjplyhRdQECAOTw8PO7RRx8NjI2NbXlP7r333uqYmJjYWbNmhaSlpUkHDx4cEx0dHfuPf/zDd8WKFeXX9mnWrFmN+/fvb5nJfv311z29vLwSKysrRYMGDYpdtGhREAC8/PLLPg0NDYInnngiKDo6OjY+Pj4GACZOnKifOXNmfWJiYkxUVFQcz/Pk6aefrgaA559/PqimpkaQnJwcEx0dHfvss8+2lBL43//+px47dmyTSqVqNQDesWOHavLkyTdMy+4I0t81DXuD5ORkevJk5+sFDkQoR1H5/46DdRHB/aXBPZrx47RWNKzPhmSwW5dSgK/mpw1aVJTY8Kdn1WAFfT/7yNko1r/XCKWGwfwHVR0f0Akopcg5b4FExiAgTAiblSLtoBE+gUL4BApa1furN1Vja85nOFd1GC5CL4jSFmPSkJFIHt+7wsxRUJ6DsfoctEV7oSvaC0tTIQBA4h5vX3caNBEil9AOP2eN3+dD93MxfNeMcWiq1bU0fJ0D/a9lkN3mA/U94R32y5zVAN3OYrjcHQ6BR/+Z/mw4/zay687gldGfQ8g6ZmC0LedL7C36DotjliPZZ2Kr52ymehTvegxiTSR8x7zWTgs3hhCSRilNdkRfb3COM5TSwddsO325fuiAYKDcN4xnanBx614cGHEG0bUvYco8eatlDft/0uPiKTMe/n+aXr0WH/rZgHPHTHjkZQ0YtmfnqTn3KarTPkDo3M0Qq0O73Q5vM4KwEmcE7CbHWqpH1YqT0DwcA9lwxy0lr3jhGEThKrg+FOOwNvuTjIwMxMRceS39VfalPc6fP2+Ij4/PcFiHbjLmzZsXfOeddzb+6U9/6pdZsqSkpKidO3fmuLu792/6IoCpU6eGvfPOOyVXR2GbOXv2rPugQYOCO2rjhnmPbaz7aXkKAKWUOkYZOLkOwhIobvdH4/9yYLnUCHGkutttsUohFJN8IQzs0hrvVsQPEyM/y4rcDAsiE/reMCDzjBm6Jh4T5zhOABJCEHHVazHqeRh0FGd/M+HCSbtZUmCEEGo3BhqJB+6PfwGX6s5i86VPUJn4AbbW7oFf46PwcemfeqBdgTAsZF5DIPMaAs/kp2BpzIe2aA+0hXtQfepDVJ/6ECJV0OV1pxMh9Uhss2i9rdwAgYekV8UoALuo5Cnkt/l2avDZnEJs71//CFK9pQnp1Ucxyu+ONsUoz1NYLRRiSdfeu2mh96GoKRvfZa2BnzIUPopgAIDVUIWinUth1RbDffAjjngJvUlbL9q50KstLkdICRFDKifXrbEPjBDi3DEzygptCAjrvfp41eU2uHmxPRajlOfQkPUNZN4p3Raj5oY8iFyCb0qHaSfX0xsRUspTe4TU9dY1NOqJeHRy6/H222+X5Obmitzd3a9bE9uXmEwmMmvWrIa2xGhXuOGAgFLafQXjpMfIRntD+2MhtNuLeyRIAUAcbV9PTjkK3c/FECe4QhSo6PTxQeFCqDQMzp8w97kg5TmKtIMmePqyLWuoegOlmsVtM2VoqOFRlGNFaYEVRblWqNQMAiOE8A8RIsJ1EJ5O+QDbzv2Ig7aNeC/tCYwPnIPJwQtbitgPdAghEKtDIVaHwj3xQVgNVdAV7YO2aC/qLv4Pdee/BCNSQeadBLl3sn0g6RoJQphOl3wxm3g01dt/tA08GBadMkfhtFaYztZecUm0dG7ij1EKQWRCWMsNkCR2v75hT0ir3AuO2jDMt3XtUZ6nYBgCq4Vi7xYDxk6XtTLV6giWYXFv3LN4/8RT+DL9X1iW8i5YYz2Kdj4MzliHgClrIPcZ5uiX42hOEkJWAlh9+fHjANL6sT8DFspR8DwHBiK0ZZTtFywEw9rXkfaWIKWUoqaCQ2hMz6P8utJDsOrK4JnydLeOt+rKUXXyfbiEzYAq5PYe98dJ/0OkLIiYdagg5bVWgKNOh10nfcZ3331X0J/nnzhxor4/z9+MRCKhzWV3eoJzhnoAw4hZKCb7oemHAliLdRAGdF5Atgc12cA1mKHdUgD5OB9IBnVu8E4YgvhkMY7sMqKuioOrZ9/V4bx03oLGOh7T71b0eqoWIQQaDxYaDxaxSWKUFVpReMmK8yfMyDhlhm+QEInDxZg5aC6aPk1Cocsm7MV3OFW5D3eG/RGDvcbddOlkQpknNNELoYleCM6ig77kEHRlR2GoOAld0V4AsAtUzyQwlXMhiLQ73DaXldE18Wio5S4LUPtvs+lKYoVYQlqMUSxmCqOBb7OOK2+0Qbu5ALzOCtlYe2o5V2MGQjp+DYQQCH1ksFX0z0QhpRTHyn5BoCqyJYIJABfTzKiv5TB6qgyUt5clys+0ID6la86lKrEG98U/h49P/wVfn/sXRl86CmozIXDaJ5B6JDr41fQKTwB4BcBG2LNudsEuSp1ci42CAweWkYBpQ5CKxAQ+gQIU5Vgxupf0mb6JwmSgDlk/Wp+xEQKpB5SBE7p8LKUUDdnfgxFIIPcb3eO+OBkYEELAujq2Fqmz5IsTJzc3TkE6wJFP8IV2ezG0Pxc7ZF0EIxfCZUEotDtLoN9fBludGfJxPiCdSMuKTRLjtz1GnD9hwrgZfVOHk/IUJ/eb4OrJIjS696KjbSEUEQRFiBAUIUJDLYeiHCuMetqSwhYb7Yn6nf+HcXNux0n+c/zv4rs4WvYz5kQ+DF9FJ1TUAIQVKaAKnQZV6DQAgFVXAUPlSejLT8CQmwMpR1BW8CNOr/4FUTFVkHsn41LJeFRVqcGwBEoXBp6+AijVDFQa+8/VKaqnDxuhbeQxcZa8VSogb+bQtKUAXJMFqtnBLWlXzU67nUHgI4MltxG8wQZG1reXtsKmLFTqizE37HHkZVgQFCEEKyBQuNhfO89T+1rlUCGKcqyITBRDJO7axEWoOg5TvKdhZ/l2KCUM7hz7WSujpIEMpVQP4MX+7sfNAOV4WIkFAioFw7T9GQkMF+LoLiP0Wr5L0fbOUl1hN8nqqSC1NBVDX3oY7oOXgjBdv36bai7AVJcBdcQ8sKKeT8g6GTiwGpFTkDpx4qSFAV9LlBAyhxDyH0LIRkLI1P7uT1/DyIWQj/eB8XgVbNWOif4QEQvljEBIkjxgTq9F05YC8MaOXTqlcgbhsSJknLHAaukbM6y8TCvqqjkkj5O0OE32B2o3FonDJRg2wR7ZspgpygqtkCsJio8G4Ymhb2Fe1GOo0BfhveNPYXP2JzBYr6tlPOChlMJmpWis51CcZ8WlLA0y8ififPlz8Ij+AAAgiLodBnY8DLVFqDz+NkRFf0IAdz/iPV5BfPD3iI4qQGiMAB4+guvWS8YmiTF0jLSVGKU2HtqfCsFVm6CcHgChvxyMTAAiE4Cr6bwgFQYrIBvjY1/h3odQSnEwbycEkKDmyFBcSDOjutyeahwYLkRskrhFWITFCsFxQEF218sdGCpPISBtPYLNHI4rZShnBraz7tUQQnYRQtRXPdYQQnb2Y5cGLJTjYSM2sFTSZsouYF9CAfRe+ZfqMg4ggJtXzyZ26rO+AQgDdeS8Lh9LKUVDzmYIZF5QBIztUT+cDDxYjRh8vePKvjgFqRMnNze9GkYghHwG4E4AVZTS+Ku2TwPwAQAWwDpK6b/aa4NSuhnAZkKIBsA7AH7pzT4PRBRT/aH7tRS6X0qgvjfCIW0ShkA+2hsCNzF0u0vRuCkPypmBELjeOJUwfpgY2ekWZKdbEJfUuxd+SilO7jfCxZVBRPzAsHJvTscViQnGTZejIMuK/dsMuHjCBlPVWCwKTcFFZhMOl2zH6coDmB52P1J8JoNpb2TZy1CewmKhsJjtZjoiMYFRz6M4zwr/ECFkCgZVZTZknjbDbKawmCiuqtsMhgFUagae/gLYKu0O5ZF3DEOMUgRgTOsIasVJVJbssR8nUkLmlQSZTwrk3skQayJBGBZKlysRl7oqDmpXAt32IthKDVDc7g9RyBWfNIGbpGsRUldJh59fR2KzUpTkW5FzqRHp4kPwNo9CaJgSQRFCqNpISQbs65Q9fVkUZFoRFiPqtEuqrvQwSn59CkK5F/4w8gP8O+Nf+O/5t/DUsPehFKkd+Kp6DXdKaUPzA0ppPSHEcfaatxBWqwU8w4HlJWjDVwyAvTaoVE5QnGNFzBDHX4drKmxQuzJdjuJfDW8zofHSD1AGToBQ7tXl423Gatj0FVBHLQRhnMlctxqsRgyu0QzK0U5laHUEV28GWAJG2beZVE6cOHEMvX2V/wLAvwG0WIMRQljYjS2mACgBcIIQ8iPs4vSNa45/gFLaXKj2ZVwxxPhdwWrEkI30gv5gBZQzg8CqHCfOxNEaMGoxtFsL0bQpD4ppARAFt+9l5RskgKsni/PHTb0uSItyrKgq4zBxtqzHTo+9gUrDIi6FwalDJlw8ZUFAmBB5Z0SQMffhdr/bkC74HN9k/hu/le7E3KilCFT1LL2SUgpCCHiOorGOh1ROIJExMOp5FF6ywmyyC0/LVb+tFtpikz1ohASB4UKYjBRZZy1Qu7KQKRgIBPZ2VK4EIrH9RyonUGkYyJVMS3Svfr0JjEIAVnnl8ydUeMNFcSdcwu4EgOsEqq54H4DLAtVzCBiREgBFo84dFy6NRZypBC4GDogqhLGsCigDrhh7JwOFcpTs+fzKNgpceUX234xACrFLKETqUAjFIWCtbhAFqnv0Xt+IpnoOBdlWlOZbYbMB9e5HwTNmzBlxB0LdOhbEYbEiHN1tREm+FUERHX+Xmwp2o3T/8xCrwxA49WMIpG74Q/xLWJX2HP534R08PPg1MKTv1nR3E54QEkgpLQIAQkgw2nZw/91DRimwh/8Vd8Y8iBSfto3SCEMQGCZEUa4VlKcOzx6pLufg6duz4UFTwS/gzI3QRC/q1vHm2iwAgMQtukf9cDIwYTVigAf4JotDoppcnRmsRtyvmVROnDjpPr0qSCmlBy4PPK5mGIAcSmkeABBCvgYwm1L6BuzR1FYQe0jqXwB2UEpP9WZ/BzKKaQEwHK6A/tdSqOY6dn2i0FsGl8Xh0G4thOlMLYRBCoAC5ov1EAYpWgkQQggShomx/ycDKkts8PLvvY/Qif0mKFQMogcP3BQcliUYMkaCA9sMGDdDhsQRYhRdsqIkLwBhlpfhpj6KHOYrrDr5LIZ6jcfk4EXwlPvDqLc7z4olDDgbRWmBDRazXUBaLRRWsz2yab28zWIBQqKEiB4shtVKcWinAfEpYoREiWC1UuRcsLSISZGEQKlmIJaQVts07nbRonZlMONuRYvId/VkMcyzY4dgW3nHDrs3EqjG6nOgnD2tSsgTBDf4gavzRn3QcUglh4A6AISgOedWIPADq4uHuSHfvrk5F7fFNIoAhIC3aNGUt93ebsUICOoTwA/fC5Fr6GU34TCI1KEQqYLAdLM26NWD/vTjZjTWcfANEiIoQoj1BfvhzQchxDWqU225ebFwcWWQl2FFYLjwhiZYDZe2oPzwq5C6JyBgymqwYnsE2VcZgrsiH8GmzFXYmfcV7ghb0q3X1Yf8BcAhQsh+2P+RYwE83L9dGphYYIZVaIVUKLthBD0wQoiscxZUV/RcPF5Ns0N2bFLPJjnqMzdC5BICWTcdoE31WWAlrhBIPXrUDycDk6tLvzhEkDZYwGoGRiZVb1H+1BHwTY5L02dUQvi8N6rD/TZv3oy5c+ciIyMD0dH2CaKCggIkJCTIXn/9dc+//OUvVQBw//33ByYnJ+uffPLJ2nnz5gUfPHhQVVhYmC6VSml5ebkgOTk5prS0NP3a9v/61796/fe//3VnWZa6ubnZvvzyy4LIyMh287krKirY2bNnh6Wnp8vnz59fu379+iIA0Gq1zMyZM0MLCwvFLMti6tSpDWvWrCkFgEuXLonuu+++4KamJgHHcfj73/9eumjRosZr2y4sLBT+8Y9/DNq7d2/ODz/8oHr55Zf9rFYrEQqF9I033iiZNWuWFgCGDRsWVVVVJZRIJDwA/Prrr9l+fn4t62i++OIL9Z/+9Kew/fv3Z4wbN85gMpnIfffdF3Tu3DkZIQTvvvtu8Z133qkFgP/85z+at99+24fneTJlypSGjz76qBQA/vnPf3rIZDJ++fLlPXawvRnojzwYPwDFVz0uATD8Bvs/AWAyABdCSDil9OO2diKEPIzLA5zAwEAHdXXgIPSRQTLEHbo9ZVBMCwAjdey/jlXazY4ob4/C2WpN0O8phWKqP9hoEWx1JpjO1ELgKUWEnwRHhRTpJ0zw8u8do4nSAivKC20YN+PGg7KBQOxQMY7vNSLtgAkzlygRl8wiejBFRYkNhZfGQlk6BEXKLTiHX3C68gAGeY6BOGMGYkNCEZdsj6id/c2emkoIIBIRCC8LSYmMgVINCMV291/A/vywCVKo1PY0YKULgxn3dN6BmDCkW8ssbRVdL6lyrUBthjdzaDTlosBTjArXFIyZ/GyrdF4A0ClL0Jifi+Apm8B2kIbFWw0wNxbAVJwHS00xLPCDqTYD2oJdaAnEERYiVSDE6lCI1GFXxKoqGIyg/QFRRbEN6cdNGDdDBrGEQeIIcUv6c5k2H8XaS5gd8VDn339CEBYrwqlDJlSWcPAOaPu7XHcxFZXH3oDMZzgCJn0ARth6MmCY72QUNGbg18JvEOQSjVj3lE6dvz+glP5MCEmG/Rp9GsBmAP1aO22gYr7YgNCSUNSqBCgxWOEf2vZnv7nkS1GO1aGCtKbCvv65J4ZGxpqLMFWnw2v4i91yHaeUh7kuG1LPQTeda7mTzsE0C9I6M9C98rSt4OrNXSpldzPiSDHalfZSU1MxZswYpKam4rXXXmvZ7urqirVr13o+88wz1RKJ5LqMF5Zl6apVq9xfeOGF6hu1n5SUZHjmmWcylEol/+abb3o89dRT/tu2bctrb3+ZTEb/9re/lZ09e1Z6/vz5VrPpzzzzTOXMmTO1JpOJjB49OnLTpk2qhQsXNq1YscLnrrvuqn/hhReq09LSJLNmzYpYtGjRdeL4n//8p9f//d//1QCAp6enddu2bTnBwcHWEydOSGbMmBFZVVV1rnnf9evX540bN85wbRv19fXMv//9b6/ExMSWsizvvfeeOwBkZ2dfLC0tFUydOjXijjvuyKiurmZXrFjhn5aWluHr62u76667grds2aKcPXu29oknnqgdNmxYtFOQDhAopasArOrEfp8A+AQAkpOTb8lUMOUdATCdqoH+QDmUtwc4vH0iZFqECusmhvr+SJDLwpdvsMCS3Qjz+ToAwHgzj6r9LBpkakj8ZBB4ScG6ShyyFgQATuwzQionvZ4W7AiEIoLBIyX47VcjaipscPcWgBUQ+AUL4RcshK5JguLc+0FFc1Ag2YHDJdtgdjuIBjIcau1i+CpCMXmuHEIRAStAhwMwwhB4+V356vbFgI032MA3WSHw6bgGaXtYOQsEl502GTEL9eIwRFmA6p+NOLHPhDHTZK3WrLHudrHO1Zo6FKSMUAapeyyk7rGt+20zwdJYAHNDLswNebA05MHckAtt0T6AXq5xShgIFf4tAlWsDkWjOQoqr2Co3UWQq+yTAdzluc+rhfPx8l0QMEIked/WpffCJ1AAmZygtMB6nSCllKL23DpUn/oQisAJ8Bv/VruCeW7kwyjR5uBM5cEBLUgJIQ8CWAbAH8AZACMAHAUwsR+7NSDhCgzwq/JHk4cQtTauXUEqVzJw92ZRlGNF8jjH1UCuKW8WpN0fHtRnbgQRSOASPrNbx/MWHYQKX0jcYjve2clNydUR0p5CKQVfbwbbyTJ2TjqPTqfDoUOHsHfvXsycObOVIFWr1XT48OHa1atXuz3zzDM11x67dOnSqo8++sjr6aefvqEgnTlzprb57zFjxug2btzoBgDr169Xf/TRR56HDx/OLi4uFo4fPz7qwIEDmYGBgbbbb79dl5WV1erGqFQq+ea2JBIJTUxMNBQXF4sA+zipqamJBYD6+nrW09OzTTW+bds2zfvvv18KAKNHj26ZNE1KSjKZzWbGaDQSqVR6Q43xzDPP+D377LMVK1eu9G7edvHiRemECROaAMDPz8+mUqm4AwcOyBiGQXBwsNnX19cGAJMmTWr65ptvNLNnz9YqlUre39/fvHfvXtmECROuE763Gv3htFIK4Go15X95m5MOEIWqIIpWQ/dLCaiV7/iAHkAIAasWgxGzLefWLI2B+v5IKG4PgHqEO6yUQe3Jeuj3lKIxNQd1H12wz3YC4BrMsFUbQWnX5wYqS2wozrVhyGgJBMKbY3Y8YbgYQhGQdvB6Ex6FikHMEDFi4zwwPex+/GXUOkwJXoxC/Xm8d+IpfHbudVRzORAIyYCNBtgq7NdCgXfXBr6UUuTUn8OnZ/+Ol/bPxw9bPkDF5nRQGw8iYiFTsEgeJ4VRz+PUQSN4/srnhb28HrMrTrsAYCnUwpxRDwBgBBJI3KLhEjYDnklPwH/Sewi760dELTmGkDnfwe+2t+E+6GFI3KJg0RajJv2/OLHtCA7/mI20bz5E7fkvIZMakDxOCpmi9eXSypmRVrEXCR4jIRO2v+66LRiGYMRkGYaMbr3mlFKK6pPvo/rUh1CFzoD/hHduGL0VsmIsHfJ3LI5d3qXz9wPLAKQAKKSUTgAwBEBDv/ZogKKfABwcegDDRmswaMSN1yQHhgtRXmRP93cU1RU2SOUEMkX3rkWcuQlNeTvgEnonWFHXvhfNsGIVPJOXQ+Y1pFvHOxn4MAoBICCOEaR6G6iFbykX5sRxbNmyBdOmTUNkZCTc3NyQlpbW6vmXX365/MMPP/S22a53fQ8KCrKkpKTo1qxZ0+mZgrVr13pMnjy5EQDuv//+Bk9PT+u//vUvjz/+8Y9BL730UllgYGCn7OVramrYXbt2qe+4444mAHjjjTfKvvnmG1cvL6/Eu+66K2LVqlVF1x6TmZkpcnFxsbUlOL/88ktNXFyc4ernHnzwweDo6OjY5557zoe/7AZ56NAhWWlpqWjx4sWt0oEHDRpk+Omnn9RWqxWZmZmi8+fPywoLC0WxsbHmvLw8SVZWlshqteLHH3/UlJWVteSeDx06VL9v377uXUhvMvpDkJ4AEEEICSGEiAAsBvCjIxomhMwkhHzS2HhdWvgtg/KOAPANFhh+q+zzczeLVHGUGt4z/VAb64ejcn+4LImAYloAJIPdwbjYv0emc3Vo3JTXki1pqzOB2jonok/sN0IsJUgY1neOqT1FImUQnyLBpXQLGuu4G+4rEypxe+g9+MvI/2BayL0obMzEqpPP4j9nXkV+w8U+6nHXuCJIOxchtfFWnCzfg/dOLMfHp19GUVM2RvjejjpdBQ4XbcePuZ/BeLksjqsni4RhElRXcMg4dWVwIrgcIe2K0y4AmDMaYDhy4+8Hw4og0URAFXI7PIY8Bv8J7yJwxvdoCtgHvWo5wgd5ITTwIqpOvIucjVNQcexNWLQlrdpIrz4Ko02P4b7dq0bVbBhFL4twSnlUHH0dtec/hzpqAXzH/aNTtRvlQlW/uTh3AROl1AQAhBAxpTQTQOcW3f7OMNvsk/JituPJn8AIIXjOvsTBUdSUc/DwYbs9OdaYswWUM0ETvbDbfaB875SzcTJwIISAdRU7RJA6S770HqmpqVi8eDEAYPHixUhNTW31fGxsrGXIkCG6tWvXurZ1/IoVK8pXrVrlzfMdj//WrFnjevbsWdlrr71W0bxt3bp1Re+//76PSCSiS5curetMn61WK+66667Qhx9+uDI2NtYCAJ9//rnr3XffXVtZWXnu+++/v/THP/4xhONaj9WKi4uFrq6u1wnekydPSlasWOH3n//8p7B528aNG/Oys7MvHj16NPPIkSOKNWvWuHEch6effjpg1apVxde2sWzZshpfX19rQkJC7OOPPx4wdOhQHcuy8PDw4N57773CBQsWhKakpEQHBgaaGYZpEb2enp62srKy34V1dG+XfUkFcBsAd0JICYBXKaWfEkL+DGAn7M66n1FKLzjifJTSrQC2JicnP+SI9gYi4jgNhAEK6H4uhmy0d786yiUMk2D393pU1LPwj1RDfJWJrGSIG4TBShCG2OtMbi4AEbNQ3BFww9IcNRU25GdaMWyCtEclB/qDwaMkOPubCacPm3DbTHmH+0uFCkwOWYQxATNxpHQH9hdtxupTLyJck4jJwYsQpo4fMBFTa7kBYEmLSGwPvaUJR8t+xuGSbdBa6uElD8CC6D9jqNdtELIi6EIb8XPuBhwq3YpTVfsxPWwJUnwmIzBciKYGDnmZVqg0LALChPZapFK2yxFSgbcUluwGcFprh6m+zeiaeJzYZ4RBRzF4jAZBEV4AUmCsuYi6C/9FfcZG1GekQhkwAa7xSyD1HIJjZbvgJvVGqDq+w/bbo6bChtOHTRg5WYjGM39FU942uMX/CR7JywfM/95BlFyuQ7oZwC5CSD2Awhse8TtFkGZBaG0YLokZmH2sCGgnZRcAfAMFEAiBoktWhET13NCFs1HUVnEYPLJ7k4GU8qjP3ASp5+Buu+PynAVlB16CS/gsKAPGd6sNJzcHrMYpSAcydXV12LNnD9LT00EIAcdxIITg7bffbrXfihUrKhYuXBg2YsQI7bVtJCQkmGNjYw1ffvmlpnnbE0884bdr1y4XAMjMzLwIAJs3b1a+8847PgcPHsy6OgqZn58vYhgGNTU1Ao7jwLIdr22/5557gkNDQ00rVqxortKBDRs2uP/888/ZADB58mS92WxmKioqBFcbEclkMt5sNrea3c3NzRXOnz8//NNPP82Pi4tr+bCGhIRYAUCj0fCLFi2qO378uPzuu+9uuHTpkmTixIlRAFBTUyOcP39++Lfffpszbtw4w6efftoiVIcMGRIdGxtrutzfxnvuuacRAN555x33q1+jyWRipFJp76ZEDhB622X37na2bwewvTfPfatCCIFiegDq12bAeLwK4mg1qIUHtXBXfpt5UAsP/uptrX63tb/9MQigXhIBcaS6w75ExItwcIcB6cfN161zYpWiFndeImAgn+QH3S8laEzNhfw2H4hjNW0OuE8eMEEoAgaNuPluLM2puRdPmTFswvUpnu0hEcgwMWgeRvvPwLHSndhb9D0+Pv0XhLjEYkrIIkRoBve7OLFVGCHwkIAI2n5NVfoSHCj+EScr9sDGWxDlOgTjApYj0tXed8PxKnAKIRSxGsyPeRwj/Kdhc/ZafJP5bxwt/RlzIh9C7NBo2CyASnPlHAJ3Cbjarg1YhD72yQBbuR6sUt3h/lVlNpw6aAJhgBGTpHDzunJZlLrHwm/8G/BMXo76zK9Rn/kNtEW/wuQRg1yZEXeE3Nuj6KRCxUClpig99Dr4qm3wSHoS7okPdru9gQqldO7lP/9KCNkLwAXAz/3YpQELW8TDzeaG2mIBNB2MQ1gBgV+IEEU5joko1lVz4LnuGxoZyo/D0lQI38GPdLsPlLdC4T8OIuWtZ07opDWsRgxLTlOP23EK0t7h22+/xZIlS7B27dqWbePHj8fBgwdbmYcOGTLEFBERYdy9e7dLSkqK/tp2Xn311fLZs2dHND/+8MMPS3HVUr3Dhw9Ln3jiiaDt27dfulogWq1WPPDAA8Fffvll3ueff+722muvef3tb3+7YfrTk08+6dvU1MR+/fXXBVdv9/X1tWzfvl315JNP1p46dUpisViIj49Pq2hoQkKCubS0tGVmr6amhp0+fXrEa6+9VjJ16tSW12W1WlFTUyPw8fGxmc1msn37dpeJEydq3dzcuPr6+rPN+w0bNizqnXfeKR43bpxBq9UylFKoVCr+hx9+ULEsS5OSkkwAUFpaKvDz87NVV1ez69at89y0aVNucxvZ2dni0aNH6270mm8VBrypUVcghMwEMDM8PLy/u9KrSJM80OSRj/r/ZHbtQJaAiBgQEQsivvz78mNGJQIRMbDmaVH/eTa8/pYMIrzxQFsgJIgZIsa530zQa3nIle3vLwpSQn13OLS/lED/aymsxXrIJ/i2rFEFgIZaDjnnLRgyWgKJbMCnILbJ0DESXEwz48wRE0ZN7ZoBkJiVYFzgbIz0m4Zj5buwt/A7fHLmVQSqIjEleDGi3ZL6TZjaKq4v+UIpxaX6szhQ/CMya0/azX28JmBswCx4K67crHiDDcYT1RDHqIFY+ySpvzIMjw99E6crD+CnnM/x77QXMNTrNsxI+gNcxPblJpyNgnWTwNbFCCnrLgEEDGzlxhtOrFBKkZdhRcYpM5RqBim3tT+JIJR7wTNpGdwTH0Jj7lZsz9sAQgG3k/9BjVYPTdT8lpIsXUEkNMHb+jQMVcfgNfwluMa2OYd3S0Ep3d/ffRjI8DYOHMOBcGIwnbgMBoULcSDbisZ6Di6anpVqaXbYde+moVF9xkawYg2UwVO63QdWKIc6Yna3j3dy88BqxOAazD2upcvVmwGCliVDtyqMSujwsi83IjU1FS+88EKrbfPmzWtz+yuvvFI+evToNl3IkpOTTXFxcYYLFy60OSh67rnnAgwGA7tgwYIwwC4e9+zZk/PSSy/5jBgxQnv77bfrhg0bZhg6dGjMnDlzGocOHWry8/NL0Ol0rNVqJTt37lRv3749W61Wcx9++KFPSEiIKS4uLhYAHn744aqnn3665r333it+6KGHglevXu1FCMHHH39cwFxzgVWpVHxgYKD5/Pnz4vj4ePNbb73lWVRUJH7jjTd833jjDV/AXt5FqVTykydPjrBarYTneTJ27NimjoybysrKBLfffnskwzDU29vb+tVXX+U3P/fII48EXLx4UQYAL7zwQlliYmLLLPyJEycUb775ZtmN2r5VIN0xnRnoJCcn05MnT/Z3N3oVS5EOlsyGKwJTxFwnMlv9FjLtRreuxnShDrUr06GcEwzVzKAO92+o5fDf9xsxYpIUKbd1vOaJ8hTGtGoYj1aBcRFBOc0fAi/7NerXH3TIOmfBH59Rdzq6OBDZsVGHoktW/PFZF4gl3X8dNt6KE+W/Yk/ht6g3VcFfGY7JwQsR6z6sT9cMUp6i7NGDUEz2h8uCUNh4K05V7MfB4i0o1xdCIXTBKP8ZGOk3DUqR+rrjDUcqYTxZDfWSiDZnsM02I34t/Ab7izaDZQSYHLQQXvXTUFdOEF9fBuORSvj8e3SXxHjjd3mgVh7qxe1PTlWV2nBsrxHeAQIMGdV5Ay2Ot+HvRx6An9ANU+u1MJQfBxFIoA6fDU3svRC7BHeuHXMTinc9DmNNOtRJb4B1m+LQ8h2dhRCSRilN7vMTDzAGyn3j7HtbkSE9C7liGaISRYhMvHHUp76aw4ZVjZgwS4b4lJ6tuz+4XY/zJ81Y+rIGTBcFglVfgZxvpsEt/k/wTF7W7T6YG/MhUvp3av20k5sb3a+laPwqB97vjQSr6r6YrP8sC6aLdfB5Z6QDe9f/ZGRkICYmpt3necrDzBkhYWUghMBo1YOnHCQCOVimZ5NTneH8+fOG+Pj4jF4/UR+yfv169cmTJ2WrVq3qdxF4+PBh6dtvv+29efPm/I73HricPXvWfdCgQcEd7XdLRUh/T4gCFb1Sc0sS5wppsge024ogG+EJgceNRabajUVAmADnT5qRNE7S4SCGMASyFE8I/eTQ/VyMxm/yIBvtDUuwGplnLIgfJr6pxSgAJI+VIOe8BenHzT0qxyBghBjpNw3DfCYjrWIvfi38Bl+k/xM+imBMDl6IBI9RfSJMuRoTYKPgPIBf8r/G0dLt0Foa4CMPwsLoJzHEaxyEbNuDCWrlYUqvhShM2W46lVggxfSw+zHMZwq25nyK7XnroRb+giTN/WCZIFATB6q3gSg6P0AV+shgTKuxu/leMxFDqb3Wrocvi+RxEngHCLokdjNqT0JnacDo6CcQ5J4CU10W6i5sQEP296jP3ARFwDi4xi2BzDul3XZtxloU/fIIzA258LvtHWTmj0ZDpgmT5soHfN1dJ70L5XgwAvtgsjNRI7U7A6ULg8JL1h4L0uoKDm5ebJfFKAA0ZH0HUAp11Pxun58zN6HqxLtwCZsFVUj3zMKc3DxcXfqlJ4KUqzf/rtJ1m+9hVt4CnaURrJiFiJVAKuzYu8LJjbn//vsbampqBoQ2qqqqEr755pu/myokN/fI/xp+Dy67fYHLojAQBmhMzenU/vEpEugaeRRkdT6VROgrh8vd4RAGKWE4WI7zPzcCxJ7yerPj4StAYLgQZ4+aYLP2PAOBZQQY5jsFzw//CHfHPgUbb8V/z7+Fd449gRPlv6KkKQd1xipYuJ6bQ7RFdb7de2Z91bv4Jf8r+CnD8fDgv+HpYaswzHdyu2IUsEfcqZmDZKhHh+dxl/ngT4kv46FBf4VIKMCvxrewT78FQNeddgXeMoBS2CqNrbY31XPYv80AXSMPQgh8AoVdToM+VvYLVCJXRLkOBQBIXKPgO/bvCF+wE+6DHoax6hyKfn4Q+T8uQkPOj6Bc6++FVVeBwu1/hKWxEAGT/w1V8GSExghhNlOU5DvdRX/vUNsVQdqZlF1CCAIjhCjJs4Hjun+9oZRedtjt+liMclbUZ38HRcBYiJR+3e6DuT4bgP075eTWp7lMS0+NjbiGW1+QUkphthnRaKqFwWr3DhIxYqjF7hCxN/+4aSDx9NNPX1dTtT+YO3duU1RUlKW/+9FXDIhZAEfxe3DZ7QtYVzGUs4LR9E0ejGdqIB3sfsP9Q6KFkCsJzp8wIzSm87OcjFQA5Z2B0ObocPYrK6IHiyFjedjNl29uksZJ8MNnWmScNjusfA3LsEjynoAhXuNwruoIdhVsxMaMD1rtI2REkAtdIBepIBeqoBDaf8tFLvbfLY9VUAhdIBMqwJDr329KKbLrzuBA8WbITzIYj9sQHJGIuyNfhJc84Lr924LyFKbTtRD4yCH06fx62ii3oXhGswqHS7Yh7eQuJCEB+0/8hLF+syERdK4dweXz2coNEPpdmTUWighYFuD47g3cG0w1yKw9hYlB869LiRLI3OEx9HG4Jf4fGvO2oe7CBpQffBlVJ9+Ha8xiqKMWgDc3oXDnw+AtWgTe/jFkXnZR6+bFQu3GIPeiFYFhwn51z3bSv1COB8N2XpAC9nqkF06aUVlig29Q91JdtQ08zCbaLUMjbdFecMYaaKIXdevczZjqssAIZBCqOneNcXJz0xIhreuhIK03Qxyr6XjHmxAbb4WFM8FkM4CjHFjCQkTsYwpCyA0nhJ04uZm4pQSpE8ehmOwHw+EKNH6VA3GMppX50LWwLEFskhgn9pu6bKxBCMG5XBY8Z8WQSB4NX2RBeUcgRGFdN4gZSPgFC+AdwOLUIRPiksRgWMcJDIawGOw1Fomeo1GizUGTuQ56axP0lib7b2sTdJd/1xjKoLc2wcwZ22yLgEAqULQI2OafwqYsVOqLoBRpMI8uBlEIMGfI0i7103KpEbzWAvl4ny6/RpYRYFzgbCRIR8Gw7SKqKrPxxpFHMCP8fiT7TOwwVZmRCsCoxeC0VlBKUVpgg1+wAFI5gzHTZN02hzpRvhsUPIb5Tm7/3AIJNJHzoI64C/qyI6i78F9Un/o3as7+B4xAAoBB4LR1kLpf8X8ghCAsVoS0gyZUlnLwDnBemn+PUJ6C8jyIQABwQGcz8v1DBSAEKMqxdluQVpdfNjTy7vpnz1h9FoSVQO43ulvnBuyTYKbaTIhdI0EGfl1dJw6AUQoBlvQoQsobbaBG7paJkHK8DeW6AhQ1ZUNkdUO9qRoEgJARQy5UQcRK+t1134mT3sA56nHSJkTAQH1fBGreOgvdtiKo7gq54f7xyRKcPGDC+RNmjO6Cu6zRwOP8CRMiEkTQhEthqHWDwP/mXwdBCEHSWCm2faXDpfMWRA1y/M2SIQwCVZEd7wj7LGuzaNVZG1uEa7OI1Vkbobc0oc5YgaKmbLiI3bA4ZjkGe41F/eELgHfXIoqUUhjTasBqxBCGKLvz8gAAand3GMQsIuumIt/8LTZlrsLRsp8xJ+IhBLncOK1PfU84OEpwcr8JFSU2sKykWym6zfCUx/Hy3YjQDIKb1LvD/QkhUPiNhsJvNMwNuai7sAGm2gz4jvsnxOrQ6/b3DhBAJifIvWhxCtLfKxwFT3mwrBDg0Om1nBIpAy9/AYpyrBgxqXunrqmwgRB7tL6r2Iy1EEjdeiQkbYYqcOZ6SFyda0d/LxCGgHURgavvflbirVDyxWjTQ8xKwRAGJyv24Hz1MQgYIRLJZChFaogYMZg+MCly4qQ/cY56nLSLOEoN6QhPaHcWQzrKC0Lv9oWmwoVBSJQQF9PMGDFR2mljlrNHTbBagORxEhARC/lYezSN2nhofyyEZKg7RMHdFzT9SUiUEK4eLNIOmhCZKOrXWU0BI4SL2K2lpEpXsFUYIBnUteNspXpwNUbIJ/n16HUTQiDwkMBfKsbg6hXQex5FpikVH6Y9h2TviZgedj9UYtc2jzWagBP7DNA28IhLEvdY5OXUn0W9qQozwv7Q5WPF6jD4jH71hvswDEFojAjnT5pRV8XB1dM5APm9QXkKK2MBKxSCBQHbhY9sYLgQx/cZYTLw3SqbVV3OQe3GQCjq+ve1WZD2BHOdff2o2DW6R+04ublgXcU9ipBeEaQ3T+oqpZcnnhgWpdo87Mz/CjPC/gAveQCiXIfATxEKb0UQLmXldHqZykBAJpMNMRgMpwsKCoSPPPJIwM8//5x37T5X1+Zsr52//e1vnk899VSNUqnkAWD8+PHh3333Xb67uzvXm/130r/cUnkxTlMjx+OyMAxEyKDxqxx0VCIoYZgEJgNFzoXOzXZaTBTnfjMjNEYIN6/WIy/eyIE32qD9sQD6g+WgPTDr6C8IQzB0rAS1lRwKsm9OsxreYAPfZL2uBmlHCHzlUEwPhDhK3eM+CNwkYHVmJA6TQVYxGrPF72NC4DycrjyAN397FHsLv4eNb/3+1lbacHirFspzpUgJtyI0pucTAr+V/QKZUIl4jxE9audGBIQJIRQR5Gb8bnwMnFwFI2ax67bdMMSYMW2hAn7BnU+/DQwXABQozu3etaamonuGRgDAGWvB9lCQmuoywErcIJDe2LPAya0Fq+mpILW0tDOQ4XgOZdp8/Fa6E99k/hsXao4BANxlvhjiORZyoX2ZklriAX9VOAQ3cdmj4OBga1titLOsXbvWS6fTteiT/fv35zjF6K3PLSVIKaVbKaUPu7i49HdXbhlYFxFUc4JhvlAPU9qNjccCQgVwcWWQfqJzN5dzx00wmyhSxl9fGoVVCuGyKAziBDeYTteg6ds8cI033yA9MlEEpQuDtINdc4kdKNgq7JOYAu+ula8hDIE43KVTtW87gnUTw1ZjQmC4ECFRQhRnCZBA7sGzw/+NUHUctuV+gZXHlyOn/hwAoPCSBUd3GyGQsQjwZ6B26XlkWmdpxIXqY0j2ntirAwWBkCA4UojKYht0TXyvncfJwMXCmSBmu14uystPALGEoCin64LUZOChbeDh3g1DIwCwmWohkHRfkFKeg7k+BxLXKOf6uN8ZrEYMvt7c4YR3e7RESNUDT5CabAbk1KdjT+F3+Oriu9iRtwGZdWlQS9xbspXErARDvMdDIRp449YXX3wRq1evbnn817/+Fa+//jomTZqEoUOHYs6cOdINGzaorz0uKytLFBEREQcAOp2O3HnnnaGhoaFxU6ZMCTOZTC1f8HvvvTcwPj4+Jjw8PO6pp57yBYDXX3/ds6qqSjh+/PjI4cOHRwKAn59fQnl5ueByH7wiIiLiIiIi4v72t795Np8vNDQ0bvHixUHh4eFxo0ePjtDpdM4LyU2GM2XXSYfIJ/jBcKgSDV/nQBzvCkbS9qCFMATxKWIc3mlETYXthuYYVgvFmSMmBEYI4enX9n5EwEAxwRfCADn0u0vRmJoD+SQ/iCMG3oW7PViWYMgYCQ5sM6CssPuGI/2FtbxZkHY+QqrfXwZGKYJ0qGMiHay7BNTIgTfYEJskhq6RR/oxE0ZO9sL/DVqBCzXHsTn7E3x8+mWECEbDq+RuBPi4Y+gYKYSicIf0Ia1iLzhqwzCfKQ5p70aERAlhNtJOO6w6uXWwac2IT4+DRKDAyXIjIuJFcHHtnEhkWIKAMAGKcmwtdQo7S02FPfjQrZIvvA2cqaFHKbtWbQl4mwESN2e67u8NViMGtfCgBhuIvOv3R67eDEYlBBEOnAtmRm0a8hvOo1JfDJ5SSAVyBLvEIFAVCV9FyE3jjLto0SIsX74cjz/+OABg06ZN2LlzJ5588kmoVCocOHDAeN999/nfc889DUw7N6x33nnHUyqV8nl5eReOHTsmHT16dIub38qVK0u9vLw4m82GUaNGRR07dkz68ssvV3300Ude+/fvz/bx8bFd3dbBgwdlX331lVtaWloGpRRJSUkxkyZN0rq7u3NFRUWSDRs25I0aNapw+vTpoevXr9c89thjdb35/jhxLE5B6qRDCEvgcl84at44A+3WArgsCGt335ihYvz2qxHnT5hx28z2P14X08ww6ilSxndcEkUc7gKBpxS6HcXQ7SiCtdgV8nE+Dom+9QWxQ8U4sc+IvT8aMPdPSsgUN0e/gcsRUpZA4N650jWUUvA6K+DAsiUCN/u5bTUmiAIVGDpWikM/G1BXbV9nGec+DJGaQdj420acNW1BifcpeITdDUZwJwBBy8x7dyMvlFIcK9uFIFU0vBWBjnpZ7SKWMhg00llX7veI2WSERquByCqGTsuDs3V8zNUEhguRc8GK+mq+S2uQqyuaHXa7HiHlTA0AaI9SdoWqQHiPfAWs+OaZbHTiGFpKv9SbwXRHkNYNvBqk5boC/P/2/jw8jrNM9L+/T1X13q1dlrV4l/clduwkzmonZIfshEAIwzbwG2YYBg4wh3l53wPDNXOGOTDnDAxwfmSGnUAGQpJJIJA4+2YnsWM73vfd2nep16p63j+6pXjRrpa6Jd+f68oVqbq665bc6qq7nue574QTZ0X5lcwomE95cGy1FHr9/d//fRaiO9vXvjZwbYNVq1bR2NjI6dOnaWpqori4mOnTp/OFL3yBl19+mUQi4W9sbFQnT560Zs6c2e+n1auvvhr+3Oc+1whw2WWXxRYsWNC3dvRnP/tZyU9/+tMy27ZVU1OTZ/v27f7LLrus/5YAwIsvvhi+9dZb2wsKClyA9773vW0vl9lZbQAAWetJREFUvPBC5N57722vrq5OXHHFFbFM3NGjR4/m15tCDGlKJaRKqduA22prszMqIt7lqy0keNV0ujecInjF9LN6O54pEDSoXepl7/YEV9wYxOs7/0PYsTVbXo1RNdsa9oihWeCl4P1ziW5qIL6lCbsuSsE9cwccrc0nHq/ipg+E+f0vu3jsx13c9YnJk5Ta9TGsaYFhJ/9KKSLvnTXq6Vf9MTPJsNMSh5lhvD7FNbcGsTzvvrc8po/3r3qAVSfX83r0xzx56Mdsrn+Ou8o+RdFzHsI3z8A7Mzyq4x/t2ENj9AQfWPTXWfl5hqu9xSHW41I5c3KNqovRswscnr1sA/fM/0suH+AzdjAza9PvlWMHUyNKSJvrbEIRNarPJTveAoAV6L+42HAopfCEKkb9fDF5GZliRE5bAk/NyD+jnbbEsG+YjifbTdGZaKUkUMG6GXee16c6GwZLHsfLvffeyyOPPEJ9fT333XcfDz30EE1NTWzZsoV9+/bFb7rpJisWi434g2Pv3r3e733vexVbtmzZU15e7txzzz2z4/H4qC+MvF5v30WHaZp6NDGJ3JpS/2CyhnR8Fbx/Dspn0v7QgUETjuWX+kglYP87/a8l3bMtQU9n/2tHB6NMRejK6UTumI2nOoTyTZ6374y5Hm57IEJnm82jP+6kp2tyrA+066NYFcP7d3ITDk57+t88m+vAzMwIqdP87jrc3mS0qc7m2Ue7cV2NP2iwdMFM/vyir/HR5X9HzI7y4KGvc7JpP90nmkZ9/DdOb8BnBrho2lVj+0FGaP87SXa/ncxqci/yW9JJv8d95ugusCNFJsVlBscPjGwdaVOdQ9koCxrZsUxCOso1pK6doGXnz0l2Hh/V88XkZpZkRkhbR1cjwmnLjxHSvS1bePzAv9MebxqXZDRX7rvvPh5++GEeeeQR7r33Xjo6Opg2bRoej4dNmzYZp0+fHnT+8VVXXdX90EMPlQC89dZb/v379wcB2trazEAg4JaUlDgnTpywXnzxxb4L91Ao5HR0dJx3gXfttdd2P/XUU0VdXV1GZ2en8dRTTxVfe+21Xdn+mUVuTJ4repFzZsRL4T1zSO7rIPZG44D7TZ9hUVphsuPN8wsVuI5my8txplWbzJg3ugsg76wIofVVKJVuqN35X0dxOvOz4JHbnSL6ej3a1dTM9XD77A6qjtbx0r+eoOtUfhc60o7GboxhVQ5v/Wj8nRbaf3EApyu7FYWNsIXyGdgt5/++ujtdwoUG9hn//EoplpdfzpfXfp9r5t3JSesYr2x5lFdP/h7HHVmhvpjdw/bGV1lVcQ0+a+SFZs6kXY3dPPx/82WX+Ljm1qAUebmAJE53csW2K3FOe3nt6eioClvNnO/h1NEUdmp4NzIcW9PW5FA+ium6kK6wC4y6Oq4dayLesgc3NWAXCDGFmQVeUIyq0q5OOugeOy8S0vnFF3Fl9Xsp8pfnOpSsWrp0KV1dXVRXV1NZWcmHP/xhNm/ezPLly3niiSesOXPmDHpS+9KXvtTY09Njzp07d+lXv/rV6iVLlvQAXH755bFly5ZF582bt+wDH/jA3NWrV3f3PuejH/1o880339xX1KjXVVddFb3//vtbLr744sWrV69e/JGPfKTpyiuvHHCKr5hcptSUXTH+gtdU0vNqPR3/eQj/ilKM4PlvIaUUyy/18eKTURpOOmf1f9y/I0lnm8vVt4SzcqHttCdw2hIoMz8v2lOneohtbcE7rxCrIkBRbZCF3Unq97Rw+FutVC0PElxQgHd2BKsqlFc/h9McB1sPq6CRtl3i21rwzAxjRrI7xVQphVnqP2uEtNechV7mLOz/Bq3P9HPrvD+jbsUuTmzfyW/2Pcibpzdw98LPMLtweMVTtjW8QspNcGnVjWP6GQC6N5yk83dHmPaNNYP29O3VO31ysDWwWmvcrlT6ok5MeomeOOXt5RgJL61NDu4o2l3NrPWwfWOC08fsvim8g2lpdHBdxjxCOto1pN5IDVXX/E9AZgJciJRlYBR6R5WQ5lPLF58VYGHpqlyHMS527NjR93VZWRkbN24EYOfOnclly5bt6X0sGo1uBVi4cGHywIEDuwDC4bD+/e9/328LmN/97ndH+9v+1a9+tfGrX/1q36jHqVOn+gL4+te/3vD1r3+94cz9zzwewDe+8Y2zHheTg4yQihFRhqLogfm4XSk6Hz864H4LL/Lh8cKON99NIrSbHh0trTCZszA7SYt3TgFFf7YAI+RBa03PS6exW3M78ui0JUgcTPfC9S4opOjPFvRNew1dOZ3qv1rE9L9YyOFAMfsOuHRvbqHzsSO0/fseup46TupE92AvP2FG0vIlsbcdHbOzVln3XGaZH6d5dL3qimdVMTewhI/O+DI9qU6+t+Vv+c2e79KdHLpf8Runn6EyPJsZkbGtS9daE321HhxNz4ZTw35erMfl5T9EqT9xfr0IN2bT/ccTdPzqYLqQlJj0Usn0Z5eRmbKrRnGGrp7twTAZdvuX5rreCrujb/miTB+GZ+RrXnsppVCj+WHFlDDaXqR9LV9KcndDLprq4smDP6E5ejpnMQgxFcgZQIyYd3aE0Loqep4/NWDy5PUpFq30cWBnklg0Pe3s0J4UrU0Oa67xo7JYhbX3tdz2JIl9HXT86iCxt5rQ7sTecdeOJra5ifZfHST6Uh3adtOje/2MGFYvC7H2M9XsDFewwa3CWFeDd34hqbpo3/RjpztFdFMDTo6SjVQmIR1qNE9rTeztZsxpAaya0V+UDsYq9fc7ZXc4PJVBlIL5yaX87WU/YP3Mu9hc/wL/vOkzvH7qj7i6/2m8p7oOcbLrIJdV3Tjm0fzUiR7s01GMAg/R1+uH/W/qDyhsGw7tPnv/5JFO2h86SPJwJ4E15ah+ZipMBUqpm5VS+5RSB5VSX+nn8VlKqeeUUu8opV5UStVktl+rlNp2xn9xpdSdE/4DjFAqlf7bt4x0QmqM4nPS41VUzbKGnZA21dt4vFBYPLrLASfWghUoHdXfiJPopO61vyfWvHtUxxZTw1gTUiOHPUi3NrxCc/Q03lGu+xZCpE2phFQpdZtS6sGOjqFHPsTYFNw9GyPsof2XBwZM/JZd4sOxYc/W9FrSzS/FKCo1qF02PnczzWIfRQ/Mxzu3gOjG9LTikazZGwu7MUbHfx4i+no93tkRCu+bN2Rl2sqZHu78aAE9McUTzync1dMp/sRCfIuK069ZHyX2ZhMk0wl9qj5K4kAHbmJk6yBHy66PYUQ8GOHBR7NTh7tw2xMELi4bt/WOZpkfHbVxoyPsgwEYRV6U38Kui+KzAryv9uP8t0u/Q1V4Do/u+798d/OXOd554LznvXF6A5bh4eKK9WOOP7axAUxFyV8sQSddoi8N7266MhRzF3toa3ZobXTQWtP9/Cm6njyGETApvG9eOiHN4g2efKGUMoHvA7cAS4APKaWWnLPbt4Gfa61XAN8A/glAa/2C1nql1nolcB0QBZ6ZqNhHy06lL7DfTUhH9zozaz20NDjDWoPaVOdQNt0a9XvIjrVi+kdXYTfeth871oQ5htFVMfmNeYQ0R1N2OxIt7G99m4Ulqyjwjb7KtBBiiiWkUmV34hghDwXvn0vyYCfR1/ufrl823aJypsXONxMcO5Ciqc5h9TWBUd31H3ZcQYvIrTMJ3zITtztFx68PEt3UgB7FWqzh0Cm3b02tG7MJ3zqTyHtnDpnE9Zo+w+KOj0WIxzSP/aiLrna3bx2pr7aQ4k8t6iuLn9jVRvcfj9P24B46Hj1C7O3mUZ3Eh8uuiw5rum5sSxNGgRdv7fj93fX2InVGMUqqlMKqDJKqe7doyvTQTP5i1T/w4SVfpDPRyr9t/hKP7P0BPalOAFJOgrcbXmJF+RUEPaNrF9NLu5roG434l5fgW1iEb2kx3c+dRtvDK1gzY64Hr1dxaHcSpRRGyIN/dTmF983DKh9boaU8dylwUGt9WGudBB4G7jhnnyXA85mvX+jncYD3A3/UWud91ZzeEVLTTP+7jnYWa+/a0RNDjJJqV9Ncb1M2yum6kJ6ya41y/WiiZQ+GJ4SnYMaojy8mP7PYi445uLGR3XB02hKooIXhy01V27frX8RQFisrrsnJ8YWYSqZUQiomVvCKCry1BXT+9vCAa9iWXeKjo9Xlucd6iBQaLLxoYtZ6+OYXpkdLFxQSe7ORjocPYjdk93o0daKb9l8dJP52E74lxRQ9MB/fKJKy6TUWd34sQiKuefRHXXS0vTsCagSsvlHH0LVVFNwzF//FZeiYTfTVOtp/cYDEnras/UxnshuiQxY0Sp3uwa6P4l9VNq6jdGZZ+g74qKftTg/itifOuuBRSrFq+jr+du0PuHrG7bxZ9wz/vOkzvHH6GbY1vkrc7slKMaPE7jbcjiTBy9N9FsM31uB2JNOj38NgKk2t3Ubnnk66O12Cl00jdOX0YfeGncSqgRNnfH8ys+1M24G7M1/fBUSUUudmRx8Efj0uEWaZ3ZuQMvopuwBl002CYTXktN3OdpdUglFX2IV0UaPRJKRaa+Kt+/EVL5D1oxe43hHOkd5gdVoTfW1jJlpztI7D7btZVn7ZmG9aCiEkIRVj0FfgqCdF52NH+t2ndqkXf1AR7dZcfLUfcwKryBoBi8hNM4i8bxZu3KHjPw+TOt2TldeObW3u+5kL7ppD+D3VY7pLW1FtcefHIySTmaS09fxpucpQeKpDhK6cTtGH51P08YVYNSG6nztF6mR2CyG5PSncztSQCWlsSzPKb+FfUpzV45/LLOsdIR3diLBnToTgFdP7fcxvBbl9/if5/CX/h4rgDH6793v8du/3KAtUMq9o2ahj7hXd1IgKmPgvSl+0+5YWY1UF6X7m5LB7jBYlYwRicQ7vyc/2Rjn0JWCdUmorsA44BfT98SilKoHlwNP9PVkp9Wml1Gal1OamptH3qs0WJ5VKJ2eZPoajnbKrlGJmrYfjh1KDrqVvyhQ0Gm2FXe06OPFWzFH0ILWjjTiJNvwlC0d1bDF1jDohzWEP0s31z+O3AiwrvzwnxxdiqpGEVIyJZ0aY0Huq6XmpjuSRzvMetzyKi9b6KSg2WHJxbk4c3rkFFD0wn8Dl0/oSrNGuw+ydZumdHcG/upyiD9fimZGdu6PTqizu+ngEO5VOSttbBo/RjHiJvHcmZqGPrt8fx2nN3vRduz7d2muwKbtaa4yghX9VKcozvh8lRtiD8hr9tn4ZDqvMT2BNOUZg4AvvqvAc/vLif+JDi79Aoa+U9TPvHvOaWDfhEH+7icAl0/p+R0opwjfUkDrRTXJf/+vdtaOJbW1GJx2UZVDy4VrCV1Zw4lCKRGzkvSknqVPAmXM5azLb+mitT2ut79ZarwK+mtnWfsYuHwAe01r3O1SotX5Qa71Ga72mvDz3/QMdO4WpTHpzyNEmpJCethuPahrrBv4caa6zUQaUThtlD9JEO2h3VCOk8da9APhLhteCSUxdvaOcvW1chitXCenp7iOc6jrMRdOuwjeFixm1t7fzgx/8YMTPW7duXW1zc/OgHyqf//znqx5//PHIqIMTU44kpGLMCu6YjVHgpf2XB/u9G3/ptQH+7AuFWJ7cFV4xfCbBS6ahDIUbtWn/+X7i21uG/XytNV1/OkH30yeB9B3d8Zg2WV6ZSUptzaM/6qStefCk1PCZRO6YBaYi+mbjoPuORF+F3cqBR0iVUoTfU03wkmlZO+5gxzJL/WMqUuXG7CFHyJVSrK68lq9e8R+srb5p1MfqFd/ajE64BNee/TsKrp2GEfHQ/czJ857jtCbo+O0hoq/UkTiQTliVx2DuYi/ahaP7L5gWL28B85VSc5RSXtJTb584cwelVJl6d77n3wE/Puc1PsQkma4LkDDjxEIJPH6DSKEx6jWkADPmpdeRHj8w8Pulqc6hpMwc9Wdzbw/S0SSkiZZ9mP5SrOD4tIoSk4dZNPIRUm27uJ0pzOKJbfmitWZz3fOEPAUsKl09oceeaAMlpLY9+Frfl1566WBZWdmgFy//+q//evrOO+/sGluEYiqRhFSMmRG0KPzAXFJHu4i+XNfvPuNVfXU0lKXwzS/EmpGu7DjYlLbeKZVKKayKAFZFYNjTLEerbLrF3Z+I4Lrw2I87aW0aYqS0wEvhPXMJX3/u8rrRs+ujYCrMsv5HSN2o3Ze0ThSzzD+qoka9Ym820vn40QltBxTd2IBZ6sM7/+y1xcprElpfRXx7S9/vUWtNbFsz7b8+iNuZInzLTPxL363cGC4wqKixqD9pj/t7MB9orW3gs6Sn2+4BfqO13qWU+oZS6vbMbuuBfUqp/UAF8I+9z1dKzSY9wvrSRMY9Fidn17F93U5mL/Cy/rbQmD43g2GD8iqT44cGSUjHWNDIibcCYI4wIdWuQ7ztAP7SxaM+tpg6lMfAiHhGlJA67Zn11hM8Qtqd6qAn1cnq6euxjOz0U89XX/nKVzh06BArV67kkksu4eqrr+b2229nyZJ0sfPPfvazvqVLly6ura1d+u1vf7vvzlJ1dfXyuro6a9++fd65c+cu/eAHPzirtrZ26ZVXXjm/u7tbAdxzzz2zf/KTnxT37v+FL3yhasmSJYsXLFiwZOvWrX6A06dPW1dcccX82trapffdd9+sqqqq5XV1dVOzx5mQhFRkR+CyaXgXFdHxuyM4Xfm9zq03GbBK0lNtup85SfcLp9HJsxM/py1B56NHSBxMj1IFVpWlW2xMQHJdWpEeKe1LShuHSEpLfCjLwE04RN9qHHPCYtfHsKYF+ir+niv+TgudvzmM0zVxo3VW6dgSUt/yEgrumJ29gIbgdCRJ7GojsLai34JPoWurwFL0PHsKpytJ52NHib5ch2dGiKL7a/HNP79A1orLfFx9czCvbvCMJ631U1rrBVrreVrrf8xs+x9a6ycyXz+itZ6f2efPtdaJM557VGtdrbWeNHOcE04Mn5W9yskz53moP26TjJ//eRDrcenp1GOrsNs7QjrCNaTJzuNoJ4a/ZMGojy2mlpG2fslVy5eIt4h7F32WecXLJ/S4ufDNb36TefPmsW3bNr71rW/x9ttv853vfIf9+/cD8A//8A+JXbt27dm2bdvuH/7whxX19fXnfZgcP37c/7nPfa7x4MGDuwoLC52f//zn/RacKCsrs3fv3r3nE5/4RNM3v/nNCoCvfOUrVevWres6ePDgrnvvvbetrq5uYofDxYSaUncalFK3AbfV1tbmOpQLjlKKog/X0vj1LXQ+coTij0+OQhXa1Rghi/jWFlJHugi9pwpPTZj41maibzSmE7JxahkzlNIKi7s/UcBjP+nk0R93cvcnCigZYq1X8kAHsTca8c6MYFWM/sJ2qJYvgYvLsKYFMCMTd4fYLPXhdtu4MXvQtaAD6b0BMVFibzSC5rzpur3MQi/BtdPoeaUOpz0BhiJ0XTW+pcUDJpy+QPoeoutolGJK9h+9kJXvK6YkVsohf5LmepvLrhu8qNhQZs73sOWVOCePpJi7+Oxruab69E2u8umjvwwY7ZRdwxsmMusGfFLQSGSYxT6c1uHfcOxLSCewym57vImItyRnI6MvvvgiL710/oSPcDjMF7/4RV588UUA1q9fz7/8y7/Q3X1+scN169b1Pf7pT3+aSGT4yzgvvfRS5syZ0/f9L3/5S88nP/nJJQD19fWeXbt2+adPn37Wupjq6urEFVdcEQNYtWpV9OjRo/3+g91///1tmWNEn3jiiWKAN998M/z4448fBHj/+9/fWVBQMDFN2EVOTKmEVGv9JPDkmjVrPpXrWC5EnqoQ4Rtq6P7TCYJXTx9VC5ThSJ3sJrqpkdjbzYSuqCDyvlmjfi1lKEJXV+KtLaTn2ZN0/ddRjLAHtzuFd14hoXWVw+4pOh5Kppnc9YkCHs8kpXd9PEJpxcB/tr6lxXiqQ2O6a6wdjd0Yw79y4ItM5TXxzi0Y9TFG48xKu0bN6D66Uie6caM2voVFWYysf9FNDXhmhfFUhfp9XDsa5TXB1rg9NiV/sQSzcOgbwD1dLq9viLJ0tY+qWVN7ytiFxnZTWIYHwyArFckrZ1h4vHD84PkJaXNdeh3YmKbsxlpQhgfDO7LaJJ5gOUXz+2sZKy5UZrGP5KH+i7z1Z6JHSG03xR8P/5LpoZlcO+ueCTnmudavX8/69esHfbzXF7/4xUFfa6jH+xMKvXsue/HFF9m0aZO5efPmnZFIxL300ksXxmKx82Zder3evjv6pmnq/vYB8Pv9GsCyLG3bttxpvQDJlF2RVZHbZmEW++j45QF0FkcW7dY4XX88TsPXNtP4tS10P30CZSg6Hzvab2GYkfJUBin8UG16Sq7HJHzrTCLvnZnTZLRXSXk6KTUMePTHXTTXD1xQQCnVd4JO7G8neXzk7WCc5jg4ut+WL9rRdD5+hOTRia9FYGUS0tH2IgWIv9NKdGNDtkIaUOp0D6lj3X29R/ujTIVVGcSaEcJujGGEhpdkB0OKsukW/oB8fE81B2btp/GyDuYs8rJm3din7pqWonqOp99+pE11DuFCg0Bw9O8jO96C6S8Z0RRy104QbzuAdgcvjCIuLGaxF7fbPm/pzECctgTKZ45qtsxomMri6prbWFa+dkKOlw8ikQhdXf2f6zs6OigoKNCRSMTdunWrf/v27f3feR2DSy65pPsXv/hFCcCjjz5a0NnZOfq7ZyLvyRWNyCrDb1L4wXmkTvTQ88KpoZ8wCDdq0/NyHU3/axsNf/sGnY8cQXkNCu+vZfq/XM60b6zBv7qMjv88RM8r/RdTGgllGQSvmE7RR+aP2+juaBWXmdz9yQJMCx77SRdNdYNfzGlXE9vcTPdTx0dcmba3yE5/U3aTB9pJHe+GHBTVMUszI6RjqLRrVQZxO5O43eO79jW6sQEMCFx69nRdN+HQ/exJ7KZ0W53wddUU3jMXtz1J7K3h9cFUhmLVFf4hp2+LySfba0gh3f6lo9U9r7dxc51D+fSxvYfsWMuIp+sm2g/StOU7JNoPjenYIr9ordl46k8c69g3qucbxSNr/eK0JiZ0uq5SipqCWsqD2SsemO9KS0u58sorWbZsGV/+8pfPeuzmm2/GcRzmzp279Mtf/nL1RRddlJ0m72f45je/efr5558vmD9//tLf/OY3xWVlZamioiKZtjtFTakpuyI/+FeX4VtWTOfjRwmsKe8r6T4cOuUS35EexYq/0wK2xqwIELl9FsHLKs5bF1ny6cW0/NtO2n+2H+U3J6QFSa4UlZrc88kCHv1xF4//pIs7PhZhWlX/f8LKUERum0XHbw7R9cQxCj8wd9ijvXZvy5dzRki11sS2NGMW+/HMnvj2YUaBBzzGmAobWVXpnylVHx23mw7a1cQ2NeJbWnL+FFxXkzrena7YXJ5+L/uWFWNVBel+5iSBtdOGPdoU63FpqnOYWZv7UXwxdq52WbpzCVWnytnRFqen02Xt9WNbQwowa36m/cvBFMsvTSegdkrT1uwwb+nY3jt2rAUrOLL+rb6ieZRd9Gl8hXPHdGyRX5RSFHiL2Xjqj1SF5+AxR1Z/xix+t/XLcOofpHuQTkyNm631L2FrmzXTr7tgCsr1+tWvftXvdp/Pxw9/+MPEsmXL9pz72KlTp3YAVFZWcuDAgV2927/xjW/0TU/63e9+d/Tc/QGuueaa6JtvvrkPoKSkxHn55Zf3ezwenn322dC2bdtCgUBg6peYv0DJCKnIOqUURffXolMuHb89POT+2tUk9rXT9tN91P23jbR+fxfJgx2E1ldR/v9dRcU/XkLB7bP7PUkpy6DkL5firS2k7d/3ppPYKaywxOTuT0TweBWP/6SLxlMDj5SaEQ8Ft83Cjdt0/v4YOjV4sVGtNanTPSR2tWFEPOclsKnj3Tgtcfyry3JyUlZKYZX6xtSL1Crzg6Gw68avZU3yQAdOa6LfYkZGwKLoIwvwL393VEkpRfj6GlLHu0nuG/4aquMHU2zfFKerQ24YTwUpJ0EoFsKb8BCPahL9VMYdjcISg4Jig2Nn9CNtaXDQOt1iaiyceOvICxpZfgLlK1Cm3EiZSrTWzC9ZyY1z7h9xMgrvFicabqVdty05IetHe1KdvNP0Oj2pzgsuGc21gwcPelesWLFk4cKFSz7/+c/P/OEPf3g01zGJ8SMjpGJcWBVBIjfPoOv3x0lcXYlvUdF5+/QVJ3qjEac1gfIZ+FeVEby8At/i4gFbjpzL8JmUfm4Zzd/eTssPdlP2heUTUrQmVwpLTO7+ZIRHf9zFYz/t4vq7Qsxb0v8FgDUtQOSWGXQ9eZyuP50g8t6ZZ1VmddoSJPa0Ed/dTmJ3G25HerpUoJ+1j/EtzaiQJ6e/23Qv0uG3BjiXsgysikDfKPB4iG5sQPlM/Kv62rKRPNZFYlcboWur+l3zFLx8Gp2PHqF7w8l+/1b6M3uhh0O7kxzek+KitTJ9d7JLODEMbWB6LLQGI0u3i5VSzKz1sO+dBI6jMU1FU2YdennV6N83WrvYsdYRtXxxEp30nN5IsPJSLH+/3R/EJBSze3jywI+4ovpWagrSXQ62N75GWaCS6sjwRsJ7Z1INJyHVjsbpSExIQrqt4RW01qyevn7cjyXOtnz58sSePXt25zoOMTEkIRXjJnzrTKKbGml/6ADTvrYaZRnYrXFibzQS3dSIfbIHDPAtLaHg/XPxryzF8I3uAskIWpR+YQXN/7yNlu/upOxLK/DOmdgqsBOpoDidlD71q26e+nU3C1d4uea9Qfz9FCjxzikgeM10oi/X0fP8KcwyP4lMAto7UmiEPfgWF+FbUoxvcVHfdNJedmOM1MlugldOH/aNgvFglvpJHW0e02tY04PEt7egbRdlZXeSiE65xDY34V9d1vde1loTfa0BnXTSVXX7obwmoWur6Pr9MVL10fOmS/fH5zeomevhxKEUCy/ySpGjSS7hxDBcA9PypNv6ZLGlz8xaDzvfSlB/wqZ6tofmOgevT1FQNPr3jJPoBG1jBUqG/Zx46146Dj2Jv3QJSEI6ZRxp301XsoOgJ33Otd0Uh9t3sq3hZW6ccz+V4aEr4Rt+ExW0hpWQup1JcMe/wm5HooX9rVtZXLqGiFfer0KMJ0lIxbgxfCaFH5pH67/tou0n+3DaEiT3d4AGz9wIhffXErikHLMgO+tAzIiHsi+uoOmb22j+Pzso/9uVeGqyXvgtbxQUmdz7/xSw+aU4m1+KcfJIimvvCDFn4bu/T51ySR7uJHWki9TpKPHtrQAor4F3QWG6Pc/iYjw1oUEvgGNvN6M8Jr5lw7/4HA9WmR+3O4WbcEZ988KqDMLWZuymOJ7Ksa/RO1N8Wws65pxVXTe5vwOnOUb4xhmDJvOha6vo+uNxep49RdED84d1vLmLvRw/mKK53qFmjiSkk1nCjmG6JpblwXWzN0IKUDPXQhnpad7Vsz001TmUVZpjmoLoxNPLI8xA2RB7vivRug/DE8ITqRn1cUX+OdS2g9JABSWB9DIFy/Bw89wHeOrQz9lw5NfcNPfDVIRmDPk6ZrFvWAnpRLV82VL3AqayuGjaVeN6nMForWWqsJi0XNdVwODrxTIkIRXjKrCyDP/KUmKbGgctTpQtZrGPsi+toOmfttH8v9+h/CsrsaaNz7HygWkqLrsuwJxFHp79XQ+//0UXK+c7LCuN4xxoJ7m/A510QYFnTqTvBD7cnpcATkeS5IGOMY1gZ0tfpd2WOMYA/T2H0jv6aNdFs56QRjc1YBR5+6bdakcT3diAWRbAu3DwIkpmoZfgZRVEX6un4M7ZwypCFS4wuP7ukIyOTgEJJ54eIfWkE1Iri2dnn99geo3F8YMpLrtO09Jgs+TisV3M27F0QjrcNaRaa+Kt+/AVL5QL7CmkI9FCY/QUl1Zdf9b2gBXilkxS+vSRX3HL3AeGrFBrFnuHVWXXac0kpONYZbcpepojHXtYVXE1AU943I4zGL/fT0tLC6WlpfI3IyYd13VVU1NTIbBzOPtLQirGXfGnFuM0x7GqgxPyoWqVByj74gqa/9c2mv/lHcr/+8oJLQ8/0ezmOKFDbdzkaaOntQ3zZZsooEsDhK+anp6Gu7AII2ihUy5Oe2LYyShAYlcbKPCvHP5IyHgxSzPrjJrjeEaZkBphD0bEi9M++rWo/XG6UsR3tBK+vrpvtDm+sxW3M0nk9tnDeu+Hb6wm+lo9PS/XEbl15rCOK8no1NA7ZdfyeNOjItkcIiU9bfeNF2I0nLRJJaGscmyn/5EmpHZPA06iHX/pwjEdV+SXQ207UEoxr2jZeY8FPRFumfuRdFJ6+FfcPPcByoKVA76WWewjdWLo7iG9n93GOI6Qbq57Hr8VZFn55eN2jKHU1NRw8uRJmpqG1xJsotXX11uO4+T+wkDkKxfYadv2nw9n5ymVkCqlbgNuq62tzXUo4gyG38SY4KmznupQek3pt7bT/L/foey/X4QZmZgS8RMlvr2Fjv88hN2Q7mlpFHoJryohXlnIa3ss6jstlkV8XLkkiOFLJ0PKY/StD03sbcOqDmNGBh+JC6ydhmduZMj9JoJVlh4hHUulXYCiB+ajPNm94I+91QiO7puuq1MusTcbsapDeGYN7w67pyaMb0kR3c+dInxjTdbXuIr8lbCjGK6Jx+PFTWR3yi7AzPke3ng+xtuvpv92yivHNtvBySSk5jCLGsVb9wLgL1k0puOK/KG15lDbTqrCswl6+m8FFvIWcPO8B3jq0M94+shD3DL3I5QEzi+aB+mE1O1MDrm+32lLgMfACI3PJeyprsOc7j7C2qob8Zq5u5nt8XiYM2dOzo4/lCVLluzQWq/JdRxiaphSVzta6ye11p8uLByf/oJicvHOjlD6uWXYzXFa/vcO3OjALVImE51yaX/4IC3f3QmWQeEH5zHtG2uY/i9rKfnUYqreV8Vdny9n1ZV+dm5O8OvvdXDySOqs13CjNj0v1BF/e/ACQemRGjWsIjsTwSjwgqXGVGkXyHoyCunqulZNCM+MdPIZe7sZHbPThaBGMDMgfGMNbnuS2Ob8vCsuxkfCiWG6BpbXm/U1pADTqkz8AcXhvSkME0rKx5aQ2vEWUBamb3jF4xKt+7ECZSNuEyPyV1P0FJ3JNuYVLR90v4i3iFvmfgRTWfzp8C9pj/f/2WaW+ECD0z74tF0n0/JlvGZc1XUfJeItZFHp6nF5fSHE+aZUQirEuXwLiyj9yyWkTvXQ8t0duInJ3bPRbojS9E9b6dlwitB1VUz7/11M+IYaPNWhs07Olkdx1c1B7vlkBGXAYz/u4qU/9JBKpnsbGkGLgnvnErxq+oDH0rZLx68Okjgw/N6Y400ZCrPUj9MythFSN2bT9YdjJA93ZiUuuyFK6nBX3+ioG7WJbWnCO69gxMm8b2kJVmWQ7mdOorX0AL9QxO0YLYUteItDFJebFBRn9/RsGIqaeR7Q6WTUtMZ2MW/HWrACJSg1dJzatYm37ccno6NTysG2d7AMi1mFQ/+7FvhKuGXeRwh4wri6/xonvTUOhips5LQmMIvHb8bTmsrruGPBpzGNKTWJUIi8JgmpmPL8K0op+dRikgc7af3BLnRqWAW/8k709QYa//5t7OY4JZ9dStGHh552WjXLw4f+qpCL1vp4Z1OCX3+/g9PH0qOlVpkfZap08vR283nJjxtzMEKefvtm5pJV6h/zlF3lM3Hak+hkdm5QRDc1goLgpekqk719Tvvr5zpkbIYifEM1qWPd6arU4oKQdOO8vvI1wsunsfJyP/OXZ3+q4Kza9LT7sjFO14V0Qmr6h1d1O9l5HO3E8ZfI+tGpwnEdjnTsZmbBwmFPay30lXLn/E9TEqhIF7myz+4HPdxepE7b+PQgdVyHjkR6KrrP9Gf99YUQA5OEVFwQApeUU/TRBSR2ttH673vQzuQZeXJjNq3/sZe2H+3FMzPMtK+vJrBq+HUEPF7FNe8NcdcnImgXfvejLl79UxQ7lf4dJHa1EX21jvjWlrOeZ0Y8FNw5O+9a55hlYx8hVYai6MPz8S0ae285rTXRTQ34FhX1Fc/yzi2g+JOLsEpGd1ETvLwCI2zR/czJMccnJoeEHcNj+DDU+FWynjnfg2HC9Jqx32RyYi3Dnn7rJDowPBF8JQvGfFyRHwxlcP3s+7ho2pUjel7vTJ7tja/xXwf+nViqu++x3s/PwRJS7ep0Yb5xSEgPtG3j0X3/l9ZYQ9ZfWwgxuPwa+hBiHIWurkTHHToePkT7z/ZR9LGFWW0+Px6Sx7po/eEenMYYkdtnEXnfrEF7WQ6mZo6HD322kNeejrL1tThH9yW5/p4wFWvKsJtiRF+txyjw4KstxG6KofxmXhaCssp8uJ1j60Xaq3dUeCxrkZKHOnEa40Tem27+brfEsUr9Y4pNec10X9LfH8duiGJV5McaXjF+UrEE179xA4nKdjYd8FA502LBiuxedIcLDB74XCGRwrHfi7ZjLfiKh1dAMFixisC0ldK6YgpRSg2rt+hAaiLzSDhR/Na7NzxVwET5jEETUrc7BbYel4R0VuEibDdFsX9a1l9bCDE4GSEVF5TwDTVEbp9F9LUGOh4+lLdr9LTWdG84SdM/bkUnHcq+fBEFd8wedTLay+tTXHt7iDs+GiGVhEce7GTTszEC11VjVQTofvokqfooPc+fpuvxo3n5++nrRdo6tsJGdkOMtv/Yi30qOvTOg4htbER5DQKry7Cb43Q8dJD4jtYxvSZA6NpqMBXdz54a82uJ/Jd0YnQX9WAELUqmmQQj43N6LiwxMcb4OaK1xom3Yg2jwm42bvqI/JJw4rx+6o9901tHoyxYyWVVN6KUoivZTjTVhVIKs9g36Gd7b7I6HglpwAqxrHytvFeFyAEZIRUXnMjts3BjNj0bTmEETQruzK+y6k5XkrYf7yPxTiv+i0op+sRCzHB2W67MrPVw/18X8Oofo2x+Oc6RfSmuv7Uaz8vH6HrsKDrlEFpfNaITs9aaWI+ms92lq92lq91Jf92W/r6n2+X6u0LMWTS2Ude+hLQ5jqdy9COHRoEHHbOx66KjnpasbZfoW434V5ZiBCyUxyB4zXS8tcOrPDoYs9BL8LJpRF+tp+DO2Rih3LfdEeMnakapW9WMZ0aY5aMfeJoQbrIL7aYwhzFlN968i/b9v6Ns5V/gCY18TbXIPy2xOg60bmN+8Yoxv5arXTYceRiN5tZ5f5ZOSAcZIe1LSLPYWzxuR3np+OOsqbyO0sDAhf6EEONHElJxwVFKUXjfPHTcoevJ46iAReSm/LgCTOxto/XBvbg9KQrvryV03ciSwpHw+Q3ec1eYuUuSvPBfPfz2Z1EuW1PBnJOnUX4L35Kz11dqV9PTrelqd+hqd/sSz3TS6dDV4WKnzj2GIlJkUFBiYNuaF57ooWqWhS8w+tGf3l6kY11HagQsjCIfqfoogVG+RnxHK7rH7quuqyyDwMrs9QkP31BD9LUGel6qI3LrzKy9rsg/CTuGd5IUUrEzPUiHs4ZUWT484UqsYRZAEvmvKjyHDy35b3iMsS/pMJTB5dW38MyRX/Gnw7/k6qIrcffFBty/d/Q0myOk7zS+xqnuw1zCe7L2mkKIkZGEVFyQlFIU/dkCdNyh8zeHMfwmoXVVOYtHO5quJ47S9YfjWBUBSj+/HO/M8IQce85CL5WftXj5qSgb30xyvLScxRd5OfRqIpN0vpuAuucUpfUHFQVFBiXTTGYt8FJQbBApNNL/LzLw+d9NPBtP2fzmh5289kyM6+4YfaEko9ALphpzpV0AT2WQ5JGudL/VUST+0Y0NGBEP3sVFdD11HO/8Qnzzs9cH2TMjjG9xEd3PnSJ8Y82gzeLF5Ga1Ki5+cw2Jkk42vK5YdJGP2mX5t4YbMj1IGV5C6i+ej794/niHJCZI72flcCvrDkdleBbXz76PDUcf5gj7qWovRbu63xoPTlsCTIURyc6MkZ5kJ7tb3qK2aDklARnBFyJXJCEVFyxlKIr/fBFu3KH9FwdQfovgZRNfzMBuidP24B6SBzsJXllB4f3zMfzjV2mzP/6gwY3vDzNvSZIXnujh2ecdIEYwnB7hLKu0mLs4nWT2Jp2RIhOvb/hJ3LRqi5VX+Nn6WpyFK7xUzxndBUW2epECWJVBEnvacNuTI77j7kZt4ttbCK2rwj7RQ/JgB54Z2b+JEL6xhpbv7CS2uYngWrlgmqrsVArLtdAotAbyeBmbkxkhHarti2vH0U4S0zf2KewiP+xo2siRjt28d95HsYzsLSOojszl+lkfYO/2l6lyS4m3dRMojZy3n9OexCzyZq0g4dsNL4GGVdPXZeX1hBCjIwmpuKApy6DkM0to+dcdtP1oL8pvErhoeK0MsiG2pYm2n+4HV1P8qUU5TzjmLfEyY56Hnk6XSJGB5cnuVfFl1wU4tDvJ8//Vw4f+qnDUr2+V+rIyQmpl1qCm6qIjTkhjm5vA1gQum0b0tQaMIh++pWNvI3Mu37ISrMog3c+cJHDZNCm4MUXZqSSGMtEoQGPk8WD4cKfsxpreoXXXz5m+9qt4wpUTEZoYZ4fad2AZ3qwmo71qCmpx5/bAC+1s3PUkV1/5fjzm2bME3NbstXxpjzdxoG07S8suJeItysprCiFGJ49PeUJMDMNnUvq5ZXhmhGn9wS4Se9vG/Zg6mR6Vbf3BbqxpAaZ9bXXOk9FeXp+iuNzMejIK6Z6o194eor3F5a2XBl4nNJR0L9KxVdmFdGEM5TWx60deaTe6sQFregA3buO0xQleXjEubYSUoQhfX03qWDfJ/R1Zf32RH5xUCkMZ6MxZWeXx2dmOtYAyMH1Fg+4Xb92H4QljhaRQzFTQGmugNdZIbdHycTvG9Jp5AMSaO9hw9GFs9+zCBE5b9hLSLfUvYBkeVoywl6oQIvtkhFQI0gVuSr+wnOZ/3kbzt9/BLPZhTQtgTgtgTfNjlQewKgKY5YExT6dNne6h9Yd7sE/2EL6xhoJ75lxQawNn1npYtMrL26/Emb/MS9n0kX8MmaV+3I4kOuWiPKP/3SmlsKYHsetGlpDazXGS+zuI3D6L+BuNmNMCWamsO5DA5RV0PnaE7mdO4ltYNG7HEbmhtca1bQxl4ioDcPJ6hNSJt2D6i1HGwJ+FWmsSLXvxlyyQUf0p4mDbOxjKYE7RknE7Rm+yudRaw/M9T7O/dRtLyi4BMu2G2hL4szCLqbHnJEc79nHx9HUErNHXNBBCZEfeJ6RKqcXA3wBlwHNa6/+b45DEFGWGPZR96SJ6XjyN3RDDboqRers53Yj7DEaBJ52slmeS1WkBrPJ08mqErQEvvrTWRF+pp+PXB1E+k9LPL8O/fOKmB+eTq24Ocmx/iuce7+HeTxdgjHBksbfSrt0SxzN99K1fID1tN/ZGI27CwfAN72ZD7I0GIF1gKXWsi4Ibasb1otvwmYTWV9H1h+PYDTGsitHWBRb5KOnEUa7CUCZk/hZG+jcxkexYy5A9SO2eBpxkB76SRRMUlRhPrnY51L6Tmsg8/NbYPnMHY4QtsBTFiRJuq/04ZYF0scEXjz9GpZpFOOmiiiyePfKfQ77WjIIFLCxdhePavHDsd9SWrGB24WKiqS5eOv44ASvIsrK14/azCCGGb1wTUqXUj4H3AY1a62VnbL8Z+A5gAv+htf7mQK+htd4D/IVSygB+DkhCKsaNWeil4I7ZZ21zozZ2Uwy7MYbTGO/7Orm3ndjGs6eNqoB5RoL6brJqFHnpevwosbea8C0uovjPF2EWZb+x92QRCBpcc2uQp3/bwztvJFh5+cjaXZil6d+d0zz2hNQ7N5IuIOPqYe2vtSa6sRHPvAKS+zvwzIyMSzGjc4WuraLrjyfofvYkRR+WqqVTScKJYWgzM0Lam5DmOKhB2LGWIdePxlv3AuAvWTgRIYlxVt99jGiqm9qqsfceHYxSKtOLNEl5cF7f9u5kB3Y0vczDKPbSnRp6+ULCSe+v0XSnOkg66fO11hqP6ePSqhvOW6MqhMiN8R4h/SnwPdKJJABKKRP4PnADcBJ4Syn1BOnk9J/Oef4ntNaNSqnbgc8AvxjneIU4jxG08M6K4J11fsU/nXSwm+PnJ6vHu3G2NoNzRpJjQMHdcwjfMmNc1hpONvOXe9m7PcmmZ6PMXeShoHj4U6HNLPUiBdLTscuHP+KYOtaNXRcleOV03O4kwSsnZu2vWeQjeNk0oq/WU3DnbIxQ9ouKiNxIOHFMx8BUBr2fGPm8htSJt+IrnD3oPvHWvViB8mG1hhH572D7O3hNHzMKxv9mmFns6+s32ut9tR8jvqOFFnbiKQlyZ+2nh/16luHhzgXv7h/yFnDngk9lLV4hxNiNa0KqtX5ZKTX7nM2XAge11ocBlFIPA3dorf+J9Ghqf6/zBPCEUuoPwK/GMWQhRkR5TTxVITxV569B0Y7Gac0kq01xPHP6T2ovVEoprr0tyEP/1sELT0S5/c/Cw572ahb5staLFMBNOLjtCayKoUdbo5sawFIor4F3QdGIktmxCt9YQ/T1BnperiNyy8wJO64YX70jpEqZ6MzQaL5O2dVaY8daMAdJNLVrk2g7QHD6JRMYmRgvtpviaPse5hQtHZfquucyi30kD3Wet91pTaYfL7lwZxcJMVXl4h5sNXDijO9PZrb1Sym1Xin1XaXUD4GnBtnv00qpzUqpzU1NTdmLVohRUqbCKg/gX1pCaH2VJKP9iBSZXH5DkOMHU+x/Jzns5ylDYZb4slJpFyD6Wj2djx1F68Gn7WpHE3ujEf+KUgrvryV0bVVWjj9cnhlhfIuL6H7uFNp2J/TYYvwk7BjdgS6Y58XyG8yY6yEQzs+E1E31oJ3EoGtIk53H0U4Cv6wfnRKOdewj5aaYV7xs6J2zwCz24bQnzvs8dtoSoMAskGm2Qkw1eTwpKE1r/aLW+nNa6/9Ha/39QfZ7UGu9Rmu9pry8fCJDFEKMwfJLfVTUmLz8VJRYz/CTLKvUn5UpuwD+FaVE3jsThlhGmtjdhtuZIrCmDGWoYRdByqbwDTW4bcl0H1QxJSScGI2ljZjXlxAutlh5hZ/CEUxhn0jOMHqQxlv2AAp/yYIJikqMp1mFC7l+9r1UhmZPyPHMEh/Y+ryCgk5bAqPQe0FVpRfiQpGLv+pTwIwzvq/JbBNCXIAMQ/GeO0Mk45pX/jj89itmqT9rU3atMj+eGeEh1/ZGNzaAxyC+sw3tDK8IUrb5lpdgTQ/QveHUkCO6YnJI2On3vd/M/+rJdqwZYNApu5GZ11J+8WcxPONXjVVMHMvwMKtw0YS17+lt/XLuOlKnPXs9SIUQ+SUXCelbwHyl1ByllBf4IPBENl5YKXWbUurBjg5pHi/EZFJaYbH6Gj/7tic5dmB4U3fNMh9ue7oXaTakTnaTODjwZ4cbs4lvbSawqpTQlRUoMzdTKpWhCN9QQ+poF8kD8lk3FSScOEsOLcX9RTONp2x+/1AXbc1OrsPqlx0feoTU8ASluu4UcahtJ9saXsHVE/d+NIvTU3KdtnMS0lZJSIWYqsY1IVVK/RrYCCxUSp1USn1Sa20DnwWeBvYAv9Fa78rG8bTWT2qtP11YWJiNlxNCTKBL1gUoLjN48YkoqeTQI3+9vUid1uyMksa2thB9vWHAx+Nbm9FJl9B11fgWFWflmKMVuLwCFbLofuZkTuMQ2ZFwYrQUtuBfXkIwbDBviRd/ID/XkNqxVoAB15Am2o/QefQZXDs7f5citxqiJzjasSfdI3eC9I2Qtp19c9Jpk4RUiKlqXBNSrfWHtNaVWmuP1rpGa/2jzPantNYLtNbztNb/OJ4xCCEmB9NSXHdniM52l03PxYbevzSdkNpZKmzkqQzitidwY3a/j3e/cBoVsrCqcz8N0fCZhNdXEd/Wgt049O9K5LeEE6OhrJ6CK6oJFxosXuUjEMrPdXLpNaQK01/U7+OJtv10Hv4TysjPNbBiZK6ovoX31X58Qo9pFHjBVGeNkLoxGx1zpMKuEFNUfp7xRkmm7AoxuVXN8rDsEh/bN8ZpONl/YtirNyF1srWOdHo60bTrz1/HarfFSR3uwizxYXjz40I7dF0VGIruZ2UJ/mSXsGP43SDKVji2JhnXaDc/1wfbsRZMfxHK6L9rXMGcm6i6+h9QE9AeRIwvx01P052IVi9nUobCLPSelZA67ZmWLzJCKsSUNKUSUpmyK8Tkd8WNAYJhxXOP9+AMUjjILPaBkcWEtCIASmHXnZ+Qdv0h3akqckNN3lR4NIt8BC6bRvTVOtye1NBPEHkr4cRZvX8NHQ8f4tQxm6cf6SYWzdOENN4yaMsXQIoZTQFaax4/8CBv17+Yk+ObJT7cM4oa9SanvetLhRBTS35cWQkhRIbPb7D+thAtDQ5bXxs42VSmwizxY2ep9YvyGJjlflLnJKTa0cTebMQo8BC4vCIrx8qW8A016IRLz8t1uQ5lXCilblZK7VNKHVRKfaWfx2cppZ5TSr2jlHpRKVVzxmMzlVLPKKX2KKV2K6VmT2jwI5BwYnh1eppi78iokadnZyfWMmCF3WjD2zRt+39xU8Ovli3yU1P0FO3xZiLe3KyXN4t8Z4+QtvYmpDJCKsRUlKenPCHEhWzuYi/zlnh484UY7S0DV3c0S31Z60UK6XWkdkPsrJYuPS+fRvfYBC+vGLItzETzzgzjW1aM2zn1RkiVUibwfeAWYAnwIaXUknN2+zbwc631CuAbwD+d8djPgW9prRcDlwKN4x/16CScGB58KFPhZopGG3n2Xutlx1oGrLAba9pJsuMYysr/9jVicAfb3sEyLGYVLsrJ8Y3i9JTd3tZWfSOkRZKQCjEVTamEVNaQCjF1rHtfCNNSPP94z4Dr6awyP6mTPcTebs7KmjurMgi22zcNWKdcep4/DQpCN9cM8ezcKP2b5RTeNy/XYYyHS4GDWuvDWusk8DBwxzn7LAGez3z9Qu/jmcTV0lpvANBad2ut83bYLmHH8GgPWIrMsj1Unp6d7Xj/CanWmkTrXvwlCyasX6UYH47rcKRjNzMLFuI1c5MAmsU+dNJFR9O1BJy2BEbEg/Lk6R+GEGJMptRftqwhFWLqCEUMrropwKmjNrvf7r+SbmhdFUbQovX7u2j4yht0/ekEbvfoRwutyhAAqboeAKJbm7CbYngXFGIV5Oed+Xwbtc2iauDEGd+fzGw703bg7szXdwERpVQpsABoV0o9qpTaqpT6VmbENS+lR0i9KNNA942Q5jam/ripKNqOY/azhtTuqcNJduIryc2ImsieU92HiNsx5hUvz1kMvdV0e0dGpeWLEFNbHp7yhBAibclqH9VzLF57OkZPl3ve4955BVR88zJK/mopZnmAzt8epv7Lm2j7+X5SJ3tGfDwz4sEIeXDakrgxm+iLdZDShNZXZePHEdn3JWCdUmorsA44BTiABVydefwSYC7wsXOfrJT6tFJqs1Jqc1NT04QFfa6EE8PSHjAVbh6vIbVjLQD9jpDGW/YB4C9dOKExiew72LYDvxWkOjw3ZzG824s0nZC6kpAKMaXl4SlPCCHSlFJcd0cI29a8/If+E0xlKAIXl1H+5YuY9verCaytIPp6A41f20zTt7aPeDpv4QPzCV9bRepUD05zHOUzCKwcvKqoGBengBlnfF+T2dZHa31aa3231noV8NXMtnbSo6nbMtN9beBx4OJzD6C1flBrvUZrvaa8vHx8foph6J2y27uGVJGfI9/vJqQl5z0Wb92LFZiG5T//MTF5JJw4Jzr3M7doKWYOe8m+m5Am+/4vCakQU9eUSkhlDakQU09Rqcml6wMc3JXi8J7koPt6asIUf3QB07+9loL3z8FpjKWn8/7dm+npvMNoj2L40hdhnhlh3B6bwJppqDzpPXqBeQuYr5Sao5TyAh8EnjhzB6VUmVJ9qy3/DvjxGc8tUkr1ZpnXAbsnIOZRSTgxTG1lquxCDvOAQdnxdEJ67pRd7dok2g/K6OgUcKxjL7ZrM69oWU7jMAu9oNIjpDrl4nanMEuk5YsQU9WUSkhlDakQU9Oqq/yUVpi8+GQPifj5U3fPZYY9RG6ZmZ7O+5dLMEt96em8X8pM5z018HReN2rT/vBBujecRMcdgldMy+aPIoYpM7L5WeBpYA/wG631LqXUN5RSt2d2Ww/sU0rtByqAf8w81yE9Xfc5pdQO0oOO/z7BP8KwaK1JOnEsbaEsA9fVeVsUyBlgym6y4yjaScj60SngcPtOCn0llAfPXa49sZRlYBSkK+2+24NURkiFmKqsXAcghBBDMU3Fe+4M8dsHO9m4Icb620LDep4yFYHV5QRWl5M60U33c6eIvt5A9KU6fIuLCF1fjX9F6VnTI5XPxGmMkdzfgVnsw7ugaJx+KjEUrfVTwFPnbPsfZ3z9CPDIAM/dAKwY1wCzIOkm0GhiC1w8s8KU+S083vxMSAeashtvOwAo/MXzcxCVyKZ1M++iO9meFzdFzBKfJKRCXCCm1AipEGLqqqixuOhyHzveTHD62Mgr6XpmhCn+2EKmf2stBffMwa6P0fpvmem8T5/AzbQXUKai8P5aUie6Caydlpdr+cTUkbBjAKRWGPhqC6mosViwIj8vvO14C6avEGV4ztruCU0nPGMdhieYo8hEtgSsUM5HR3uZxT6c1ncTUkMSUiGmLElIhRCTxtr3BCkoMnj+8R4ce3R9R82Ih8itM6n458so+cwSzGIfnb85TP0XN9L+iwOkTvcQ394KLgTXVmT5JxDibAknnZD67QDadkklNcnE2Hvqjgcn1oIZKDtve7BiFcUL35+DiEQ2vXLiSY53Hsh1GH3M4swIaauMkAox1U2pKbtKqduA22pra3MdihBiHHi8ivW3B3ni59289VKMte8Z/YiMMhWBNeUE1pSTPNZFz3On6Xm1jp4XT6N8Bp4ZYTw1w5saLMRoJZwYylUU/9Yidk0ze1MR2ltcrrsj/957dqz1vCq6Wru4qSimN5yjqEQ2xO0oDT3HKQtU5jqUPmaRFx1zsOuiqKDVV3BOCDH1TKkRUilqJMTUN2u+l4UXednySpyWBjsrr+mdFaH4EwvT1Xnvno1Z5CN8Y35MWxNTW++UXX15AM+sMDPmeViwPD+ridqxlvMKGtk9DZx++StE67fkKCqRDX4ryD0L/5KFpatyHUofsyQ9Ipo80iWjo0JMcVMqIRVCXBiuviWI16d47vEe3BH0GB2KGfESee8sKv7npQSvmJ611xViIAknhjY01ooCPNODlFda1Mz1DP3EHHBizZjnJKSGJ0TR/LvxFs7OTVBizLTWOK6NUgpD5c8oZG8SatdFMYvz8yaNECI7JCEVQkw6gZDBNbcGaTjpsOONRK7DEWLUeqfsetst3IRDT5dLT9fQrY0mmmvHcO3oeSOkpq+AyKzrztsuJo+6nqP8evf/oSl6OtehnOXMUVEZIRViapOEVAgxKS1Y4WXmfA+v/DHKi0/2EIvm30W8EENJ2DECiQD8ro3koU7e2RRn2+vxXId1nr6WL/5zepB2nsCOt+UiJJElB9vewcWl2F+e61DOIgmpEBcOSUiFEJOSUoqbPxBi+WU+dm5O8It/7WD7pjiuk58VSoXoT8KJYbgmhjJRlsLVYOThmdnJJKTnTtlt2flT2vf9NhchiSyw3RRHO/Yyp3AxlpFfU8WVx8AIp2PqXU8qhJia8vC0N3pKqduUUg92dHTkOhQhxATw+Q3WvTfEh/6ygPJKk5f/EOXXP+jk+KGR9ykVIhcSThzTNTCUgTINtAsqD8/MdqwV4KypudpNYUeb8ITypzKrGJnjnftJOUnmFS/PdSj96h0ZlRFSIaa2PDztjZ5U2RXiwlRaYXHnxyLc+qEwdkrzXz/t4g+/6qKj1cl1aEIMKuHE8OJDKQWmwnU0hqFyHdZ57Pj5U3ZTPY2AixWWhHSyOti2g5CngMrQ7FyH0i+zJF3MSBJSIaa2KZWQCiEuXEop5i3x8uG/LuTy6wOcOJTil9/t4PUNUZIJmcYr8lPCjuFX6X66ylS4bn5O2bX7puy+24fU7qkHwBOSitSTUczu4VTXIeYVL0vfEMlDMkIqxIXBynUAQgiRTZZHsWZdgEWrfLz+TJQtL8fZuzXBFTcGWbjCi8rD0Sdx4Uo4MfwqkP7GMtBaY+RP540+TqwFwxvBMN9tv5HqqQcUnmBF7gITo3akfTeudplXtCzXoQzIt6wEpy2BCuThH4UQImskIRVCTEnhAoMb3x9m+aUpXn4qyobf9bDjzTjX3BqiokY++kR+SDgxfKQTUmUqXMfNy5smdrzlvNYuqZ46rOA0lJlfxXDE8Bxq20FJYBolgfy9oRBYVUZgVVmuwxBCjLM8nBgkhBDZUznTwwc+XcD1d4XobHP5zQ87efbR7rzs9SguPAk7hq9vhDS/p+ye2/Il1V2HJ5S/yYwYWFeyncboKWqL8rOYkRDiwiLDBEKIKU8ZisUX+5i3xMtbL8XYtjHOwd1JLl0f4KK1fkwr/0akRsJ187MQjhhaeoR0GpB+n+o8TUidWAu+koV93/dW2A1OW5m7oMSoRbxF3L3wL/BbwVyHIoQQkpAKIS4cXr/iypuCLF3j45U/Rnnt6Rg730pw9a1BZi/w5G1hj4E01dls3BCjvMrk8uvlwnIySjgx7FJNsKYSFbBYtMogFMm/96EdbyUUOL/Crkcq7E5axf7yXIcghBDAFEtIlVK3AbfV1tbmOhQhRB4rKjW57YEIxw4keeWpKL//ZTczaz1cfWuQkvL8L57R0erwxnMx9u1I4vMpZs2XNXyTVcKOQalJYHF6ndzM2vx7/7l2AjfZddaUXStQRtnKv8QbqclhZGI0mqKn2NX8JpdMfw8hb0GuwxFCiKmVkGqtnwSeXLNmzadyHYsQIv/Nmu+l5rMedryR4I0XYvz6ex2sWOvj0vUBfIH8mzcZ7XZ568UYOzcnMAxYfZWfi6/248/DWMXwJJ04QTuE3RzHLPXR2ebiD6i8ev858Vbg7JYvhuUjULYkVyGJMehMtFHffQyPKa1UhBD5YUolpEIIMVKmqVh5hZ8FK7xsei7Gto0J9m1PsvJyP4tW+QgX5D4xSMY1b78WY9vrcWwbllzs49JrA3kRmxg9rTUJJ07psUI6XjhA8WeW8vJTURau8LJgRf4kC709SM+sshtr3I7yBPEXz89VWGKU5hUvY27R0km3REEIMXVJQiqEEEAwbHDdHSGWX+LjtWeibHw2xqbnY8ye72HJah+zF3gwzIm9gHNszY43E7z1Uox4VFO71Mva6wMUl+XftE4xckk3gcbFnmUQXjgTTLhkXf7daLDj5yek7QefwBOulIR0EtnZtAlTWSwuWyPJqBAir0hCKoQQZyivsrjzYwW0tzjsfjvBnrcTHNmXIhRRLFrpY8lqH0Wl45sQuq5m3/YkbzwXo6vDZcY8i8tvCFJRLR/ZU0nCjgFgFvvw1RQCMH1GfiWjkK6wC+l1o70qLvkirpPIVUhihA60bueN0xuYU7iYRaWrJSEVQuQVuboRQoh+FJWaXHFDkLXXBTi6P8XuLQnefi3OllfiVM+xWHKxj9qlXixP9i7stNYc2Zti47MxWhsdplWZXHdXhJnzpGjRVJRw0glpoDtA6mQ3RmWI5jqHgmKDQCh/EtPeKbvmGUWNDE8QwyOVnSeDYx37ePXkk1RH5rBu5p2SjAoh8o4kpEIIMQjDVMxd7GXuYi/dnS57tybY/XaCDb/r4aU/RFl4kZelF/sorxrbx+npYylefyZG3XGbolKDm+8LU7t08rWiEcOXzCSk4X1euppOErx/AW++GGPFZT5mzffmOLp32bEWDE8Yw0qva020HyLespfIrOswrECOoxODqes+xgvHf0dpoJL3zPoApiGXfUKI/COfTEIIMUzhAoM16wKsvtrPqWM2uzcn2L0lwY43EpRXmSxd7WPBcu+IKqQ216d7iR7dn54WfO3tQRZf7MOc4PWqYuLFM1N2LW2hTIXrprcrI7/+7e1Yy1nrR+PNu+k8uoGCOTfmMCoxlJZYPc8e/U8i3iJunPMhPGb+3OQQQogzSUIqhBAjpAxFzRwPNXM8XBNz2bc9ye4tCV58Msqrf4oyb4mXpWt8VM2yBhzh7GjL9BJ9J91L9IobAqxY68fjza9kRIyf3im7lvbAGQlpnuWjOPGWs1q+pHrqsILlKEOmkuerjkQLTx9+CI/h4+Y5D+C3ZHq1ECJ/SUIqhBBj4A8YXLTWz4rLfDSddti1JcH+d5Ls256kqNRgycU+Fq3yEYqkR02j3S6bX4qx460ESsHFV/pZfY30Er0QvZuQpkdItdYAGHlWRNmOteArmtf3faq7Hk+kKocRicFEU108ffghNJqb536YkLcg1yEJIcSgplRCqpS6DbittrY216EIIS4wSimmVVtMq7a46uYgB3elR01f3xBj43Mx5iz0UFRqsuNN6SUq0pJOHABTW+kRUie93cizIVI71kKo8lIAtJPCjjURnL46x1GJgfSkOnG15sY591PkLxv6CUIIkWNTKiHVWj8JPLlmzZpP5ToWIcSFy+NVLF7lY/EqH21NmfYxWxMc3pOidqmHte8JUlyeZ8NgYsL1tX1xTZRlvLuGNI/yUe2kcJOdmJk1pKloA6DxhKbnNjBxHle7GMqgPFjNvYv+SgoYCSEmDfm0EkKIcVRcbnLlTUHWXh8gHtV9U3eFiGem7BquifIqdO8a0jy6V2HHMz1IMy1fUj31AHjClTmLSZzPcR2eO/ZbpodmsmLaFZKMCiEmFfnEEkKICWCailAkj4a+RM4lnBgew4tyyBQ1yqwhzaN7FnasFaCvyq7dXQcYWMFpOYxK9Mdr+vCavlyHIYQQIyYJqRBCCJEDCTuGzwyAo1GmkZdtX5xYeoS0b8pud2+FXbl8yAdaa2w3icf0sW7GndK3WAgxKeXRfVghhBDiwpF00glpaH0l/tVlFBYbXLIuvwpd9U3ZzSSkTqpbpuvmke2Nr/JfB35E3I5KMiqEmLTkFqcQQgiRAwknhs8K4JkR7ts2fUb+JKOQrrALYPnTfUgrLvlvaNfOZUgiY0/LFrbUv8j84hXpkXYhhJik8uvMJ4QQQlwg4pkpu8nj3TitCWI9Lg2nbOyUznVofZxYC8oKYHiCfdtkum7uHWnfzcZTf2RGwXyurHmfjI4KISY1SUiFEEKIHOgdIe36/THiO1tpbnB484UYiXj+JKR2vKVvum6saSfN7/wHTrI7x1Fd2E51Heal448zLVjDdbPuwcynssxCCDEKcptTCCGEyIGkE8dnTqfwnjmogEWF1+Kqm4L4g/kz2mXHWvpavrh2lFRPPYblz3FUF67GnpM8d/Q3FPpLuWHOB7EMT65DEkKIMZOEVAghRF5SSt0MfAcwgf/QWn/znMdnAT8GyoFW4AGt9cnMYw6wI7Prca317RMW+DAlnBg+049VkZ4OawJef36NdjmxFjwFswAIVV5KqPLSHEd04WqPN7Hh6MMErDA3zfkwPlNuDAghpgaZsiuEECLvKKVM4PvALcAS4ENKqSXn7PZt4Oda6xXAN4B/OuOxmNZ6Zea/vEtGIdP2RQWI72zFbo7T2eZw/GAK18mjKbux1r4puyJ3oqlu/nT4VygMbpp7P0FPeOgnCSHEJCEJqRBCiHx0KXBQa31Ya50EHgbuOGefJcDzma9f6OfxvKW1JuHECRCk5/lTpE5003jaYfumeF8/0lzTro2TaMcKlKCdFKdf/Ro9dW/mOqwLkt8KMqdoMTfNvZ8CX0muwxFCiKyShFQIIUQ+qgZOnPH9ycy2M20H7s58fRcQUUr1Duf5lVKblVKblFJ3jmuko5Byk2hcfKTbdShTod30yKiRJ2dmO94GaEx/KaloA068RSrsTrCUk6An1YmhDC6rupHSwPRchySEEFmntM6fqUHZopRqAo6N8ullQHMWwxlPEuv4kFjHz2SK90KJdZbWujybwWSDUur9wM1a6z/PfP8R4DKt9WfP2KcK+B4wB3gZuAdYprVuV0pVa61PKaXmkh5FfY/W+tA5x/g08OnMtwuBfWMI+UJ5v0w0iXV8SKzjYzLFClPw3CEmpyl5q3MsfyBKqc1a6zXZjGe8SKzjQ2IdP5MpXok1504BM874viazrY/W+jSZEVKlVBi4R2vdnnnsVOb/h5VSLwKrgEPnPP9B4MFsBDuZ/g0k1vEhsY4PiXX8TLZ4xdSVJxODhBBCiLO8BcxXSs1RSnmBDwJPnLmDUqpMKdV7Hvs70hV3UUoVK6V8vfsAVwK7JyxyIYQQQgybJKRCCCHyjtbaBj4LPA3sAX6jtd6llPqGUqq3au56YJ9Saj9QAfxjZvtiYLNSajvpYkff1FpLQiqEEELkoSk5ZXeMsjJ9a4JIrONDYh0/kyleiTXHtNZPAU+ds+1/nPH1I8Aj/TzvdWD5uAd4tsn0byCxjg+JdXxIrONnssUrpqgpWdRICCGEEEIIIUT+kym7QgghhBBCCCFyQhLSDKXUzUqpfUqpg0qpr+Q6nsEopWYopV5QSu1WSu1SSv1NrmMailLKVEptVUr9PtexDEYpVaSUekQptVcptUcpdXmuYxqIUuoLmX//nUqpXyul/LmOqZdS6sdKqUal1M4ztpUopTYopQ5k/l+cyxjPNEC838q8D95RSj2mlCrKYYh9+ov1jMe+qJTSmUI+YgJMlnOHnDfGl5w7smMynTvkvCFE9khCSvqkB3wfuAVYAnxIKbUkt1ENyga+qLVeAqwF/irP4wX4G9KFSfLdd4A/aa0XAReRpzErpaqBzwFrtNbLAJN0FdJ88VPg5nO2fQV4Tms9H3gu832++Cnnx7uBdE/LFcB+0lVc88FPOT9WlFIzgBuB4xMd0IVqkp075LwxvuTckR0/ZfKcO36KnDeEyApJSNMuBQ5qrQ9rrZPAw8AdOY5pQFrrOq3125mvu0if+KpzG9XAlFI1wHuB/8h1LINRShUC1wA/AtBaJ3t7GuYpCwgopSwgCJzOcTx9tNYvA63nbL4D+Fnm658Bd05kTIPpL16t9TOZSq8Am0j3wcy5AX63AP8H+FtACgNMnElz7pDzxviRc0f2TKZzh5w3hMgeSUjTqoETZ3x/kjw+UZ9JKTWbdMP3N3IcymD+lfQHnpvjOIYyB2gCfpKZJvYfSqlQroPqj9b6FPBt0nc164AOrfUzuY1qSBVa67rM1/Wk23RMFp8A/pjrIAailLoDOKW13p7rWC4wk/LcIeeNrJNzx/iarOcOOW8IMUySkE5iSqkw8Dvg81rrzlzH0x+l1PuARq31llzHMgwWcDHwf7XWq4Ae8mdq0Fkya2juIH0hVAWElFIP5Daq4dPp8t6T4o6sUuqrpKc7PpTrWPqjlAoC/x/gfwy1rxBy3hgXcu6YIJPl3CHnDSFGRhLStFPAjDO+r8lsy1tKKQ/pi4qHtNaP5jqeQVwJ3K6UOkp6Ott1Sqlf5jakAZ0ETmqte0cNHiF9kZGPrgeOaK2btNYp4FHgihzHNJQGpVQlQOb/jTmOZ0hKqY8B7wM+rPO3R9Y80heX2zN/ZzXA20qp6TmN6sIwqc4dct4YN3LuGF+T6twh5w0hRk4S0rS3gPlKqTlKKS/pBf5P5DimASmlFOm1Knu01v871/EMRmv9d1rrGq31bNK/1+e11nl5N1ZrXQ+cUEotzGx6D7A7hyEN5jiwVikVzLwf3kOeFtE4wxPARzNffxT4rxzGMiSl1M2kpwzerrWO5jqegWitd2itp2mtZ2f+zk4CF2fez2J8TZpzh5w3xo+cO8bdpDl3yHlDiNGRhBTILED/LPA06Q/m32itd+U2qkFdCXyE9F3jbZn/bs11UFPEXwMPKaXeAVYC/zO34fQvcyf+EeBtYAfpv+UHcxrUGZRSvwY2AguVUieVUp8EvgncoJQ6QPou/TdzGeOZBoj3e0AE2JD5G/t/cxpkxgCxihyYZOcOOW+MLzl3ZMFkOnfIeUOI7FH5O5tACCGEEEIIIcRUJiOkQgghhBBCCCFyQhJSIYQQQgghhBA5IQmpEEIIIYQQQoickIRUCCGEEEIIIUROSEIqhBBCCCGEECInJCEVYoSUUs4ZbRO2KaW+ksXXnq2U2pmt1xNCCJF7ct4QQoiBWbkOQIhJKKa1XpnrIIQQQkwact4QQogByAipEFmilDqqlPpfSqkdSqk3lVK1me2zlVLPK6XeUUo9p5SamdleoZR6TCm1PfPfFZmXMpVS/66U2qWUekYpFcjZDyWEEGLcyHlDCCEkIRViNALnTL2674zHOrTWy4HvAf+a2fZvwM+01iuAh4DvZrZ/F3hJa30RcDGwK7N9PvB9rfVSoB24Z1x/GiGEEONNzhtCCDEApbXOdQxCTCpKqW6tdbif7UeB67TWh5VSHqBea12qlGoGKrXWqcz2Oq11mVKqCajRWifOeI3ZwAat9fzM9/8d8Git/2ECfjQhhBDjQM4bQggxMBkhFSK79ABfj0TijK8dZK23EEJMZXLeEEJc0CQhFSK77jvj/xszX78OfDDz9YeBVzJfPwd8BkApZSqlCicqSCGEEHlDzhtCiAua3EETYuQCSqltZ3z/J611bwn/YqXUO6TvVn8os+2vgZ8opb4MNAEfz2z/G+BBpdQnSd/R/gxQN97BCyGEmHBy3hBCiAHIGlIhsiSzFmiN1ro517EIIYTIf3LeEEIImbIrhBBCCCGEECJHZIRUCCGEEEIIIUROyAipEEIIIYQQQoickIRUCCGEEEIIIUROSEIqhBBCCCGEECInJCEVQgghhBBCCJETkpAKIYQQQgghhMgJSUiFEEIIIYQQQuTE/x+2lCig+EFSTAAAAABJRU5ErkJggg==\n",
- "text/plain": [
- "