-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathutils.py
268 lines (216 loc) · 8.62 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import os
from torchsummary import summary
import torchvision
import torchvision.transforms as transforms
from torchvision import datasets
import numpy as np
import albumentations as A
from albumentations.pytorch import ToTensorV2
import cv2
import matplotlib.pyplot as plt
import seaborn as sns
# Calculating Mean and Standard Deviation
def cifar10_mean_std():
simple_transforms = transforms.Compose([
transforms.ToTensor(),
])
exp_train = torchvision.datasets.CIFAR10('./data', train=True, download=True, transform=simple_transforms)
exp_test = torchvision.datasets.CIFAR10('./data', train=False, download=True, transform=simple_transforms)
train_data = exp_train.data
test_data = exp_test.data
exp_data = np.concatenate((train_data,test_data),axis=0) # contatenate entire data
exp_data = np.transpose(exp_data,(3,1,2,0)) # reshape to (60000, 32, 32, 3)
norm_mean = (np.mean(exp_data[0])/255, np.mean(exp_data[1])/255, np.mean(exp_data[2])/255)
norm_std = (np.std(exp_data[0])/255, np.std(exp_data[1])/255, np.std(exp_data[2])/255)
return(tuple(map(lambda x: np.round(x,3), norm_mean)), tuple(map(lambda x: np.round(x,3), norm_std)))
def get_transforms(norm_mean,norm_std):
"""get the train and test transform"""
print(norm_mean,norm_std)
train_transform = A.Compose(
[
A.Sequential([
A.PadIfNeeded(
min_height=40,
min_width=40,
border_mode=cv2.BORDER_CONSTANT,
value=(norm_mean[0]*255, norm_mean[1]*255, norm_mean[2]*255)
),
A.RandomCrop(
height=32,
width=32
)
], p=0.5),
A.Cutout(num_holes=1, max_h_size=16, max_w_size=16, fill_value=(norm_mean[0]*255, norm_mean[1]*255, norm_mean[2]*255), p=1),
A.Rotate(limit=5),
A.Normalize(norm_mean, norm_std),
ToTensorV2()
]
)
test_transform = A.Compose(
[
A.Normalize(norm_mean, norm_std, always_apply=True),
ToTensorV2()
]
)
return(train_transform,test_transform)
def get_transforms_custom_resnet(norm_mean,norm_std):
"""get the train and test transform"""
print(norm_mean,norm_std)
train_transform = A.Compose(
[
A.Sequential([
A.PadIfNeeded(
min_height=40,
min_width=40,
border_mode=cv2.BORDER_CONSTANT,
value=(norm_mean[0]*255, norm_mean[1]*255, norm_mean[2]*255)
),
A.RandomCrop(
height=32,
width=32
)
], p=1),
A.HorizontalFlip(p=1),
#A.Cutout(num_holes=2, max_h_size=8, max_w_size=8, fill_value=(norm_mean[0]*255, norm_mean[1]*255, norm_mean[2]*255), p=1),
A.CoarseDropout(
max_holes=3,
max_height=8,
max_width=8,
min_holes=1,
min_height=8,
min_width=8,
fill_value=tuple((x * 255.0 for x in norm_mean)),
p=0.8,
),
A.Normalize(norm_mean, norm_std),
ToTensorV2()
]
)
test_transform = A.Compose(
[
A.Normalize(norm_mean, norm_std, always_apply=True),
ToTensorV2()
]
)
return(train_transform,test_transform)
def get_datasets(train_transform,test_transform):
class Cifar10_SearchDataset(datasets.CIFAR10):
def __init__(self, root="./data", train=True, download=True, transform=None):
super().__init__(root=root, train=train, download=download, transform=transform)
def __getitem__(self, index):
image, label = self.data[index], self.targets[index]
if self.transform is not None:
transformed = self.transform(image=image)
image = transformed["image"]
return image, label
train_set = Cifar10_SearchDataset(root='./data', train=True,download=True, transform=train_transform)
test_set = Cifar10_SearchDataset(root='./data', train=False,download=True, transform=test_transform)
return(train_set,test_set)
def get_dataloaders(train_set,test_set):
SEED = 1
# CUDA?
cuda = torch.cuda.is_available()
print("CUDA Available?", cuda)
# For reproducibility
torch.manual_seed(SEED)
if cuda:
torch.cuda.manual_seed(SEED)
# dataloader arguments
dataloader_args = dict(shuffle=True,batch_size=512,num_workers=2, pin_memory=True) if cuda else dict(shuffle=True,batch_size=64,num_workers=1)
# dataloaders
train_loader = torch.utils.data.DataLoader(train_set, **dataloader_args)
test_loader = torch.utils.data.DataLoader(test_set, **dataloader_args)
return(train_loader,test_loader)
def show_sample_images(data_loader, classes, mean=.5, std=.5, num_of_images = 10, is_norm = True):
""" Display images from a given batch of images """
smpl = iter(data_loader)
im,lb = next(smpl)
plt.figure(figsize=(20,20))
if num_of_images > im.size()[0]:
num = im.size()[0]
print(f'Can display max {im.size()[0]} images')
else:
num = num_of_images
print(f'Displaying {num_of_images} images')
for i in range(num):
if is_norm:
img = im[i].squeeze().permute(1,2,0)*std+mean
plt.subplot(10,10,i+1)
plt.imshow(img)
plt.axis('off')
plt.title(classes[lb[i]],fontsize=15)
def valid_accuracy_loss_plots(train_loss, train_acc, test_loss, test_acc):
# Use plot styling from seaborn.
sns.set(style='whitegrid')
# Increase the plot size and font size.
sns.set(font_scale=1)
plt.rcParams["figure.figsize"] = (25,6)
# Plot the learning curve.
fig, ax = plt.subplots(2,2, figsize=(25,15))
ax[0,0].plot(np.array(train_loss), 'red', label="Training Loss")
# Label the plot.
ax[0,0].set_title("Training Loss")
ax[0,0].set_xlabel("Epoch")
ax[0,0].set_ylabel("Loss")
ax[0,0].set_ylim(0, 2)
ax[0,1].plot(np.array(test_loss), 'blue', label="Test Loss")
# Label the plot.
ax[0,1].set_title("Test Loss")
ax[0,1].set_xlabel("Epoch")
ax[0,1].set_ylabel("Loss")
ax[0,1].set_ylim(0, 0.015)
ax[1,0].plot(np.array(train_acc), 'red', label="Training Accuracy")
# Label the plot.
ax[1,0].set_title("Training Accuracy")
ax[1,0].set_xlabel("Epoch")
ax[1,0].set_ylabel("Loss")
ax[1,0].set_ylim(20,92)
ax[1,1].plot(np.array(test_acc), 'blue', label="Test Accuracy")
# Label the plot.
ax[1,1].set_title("Test Accuracy")
ax[1,1].set_xlabel("Epoch")
ax[1,1].set_ylabel("Loss")
ax[1,1].set_ylim(30,92)
plt.show()
def seed_everything(seed):
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = True
def wrong_predictions(model,test_loader, norm_mean, norm_std, classes, device):
wrong_images=[]
wrong_label=[]
correct_label=[]
model.eval()
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
output = model(data)
pred = output.argmax(dim=1, keepdim=True).squeeze() # get the index of the max log-probability
wrong_pred = (pred.eq(target.view_as(pred)) == False)
wrong_images.append(data[wrong_pred])
wrong_label.append(pred[wrong_pred])
correct_label.append(target.view_as(pred)[wrong_pred])
wrong_predictions = list(zip(torch.cat(wrong_images),torch.cat(wrong_label),torch.cat(correct_label)))
print(f'Total wrong predictions are {len(wrong_predictions)}')
plot_misclassified(wrong_predictions, norm_mean, norm_std, classes)
return wrong_predictions
def plot_misclassified(wrong_predictions, norm_mean, norm_std, classes):
fig = plt.figure(figsize=(10,12))
fig.tight_layout()
for i, (img, pred, correct) in enumerate(wrong_predictions[:20]):
img, pred, target = img.cpu().numpy().astype(dtype=np.float32), pred.cpu(), correct.cpu()
for j in range(img.shape[0]):
img[j] = (img[j]*norm_std[j])+norm_mean[j]
img = np.transpose(img, (1, 2, 0)) #/ 2 + 0.5
ax = fig.add_subplot(5, 5, i+1)
ax.axis('off')
ax.set_title(f'\nactual : {classes[target.item()]}\npredicted : {classes[pred.item()]}',fontsize=10)
ax.imshow(img)
plt.show()