-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
132 lines (110 loc) · 4.39 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import torch
import torch.nn as nn
from torch.nn.modules.linear import Linear
class ConvBlock(nn.Module):
def __init__(self,in_channels, out_channels, use_act, **kwargs):
super().__init__()
self.cnn = nn.Conv2d(in_channels, out_channels, **kwargs, bias=True)
self.act = nn.LeakyReLU(0.2, inplace=True) if use_act else nn.Identity()
def forward(self,x):
return self.act(self.cnn(x))
class UpsampleBlock(nn.Module):
def __init__(self, in_channel, scale_factor = 2):
super().__init__()
self.upsample = nn.Upsample(scale_factor=scale_factor,mode="nearest")
self.conv = nn.Conv2d(in_channel,in_channel,3,1,1,bias=True)
self.act = nn.LeakyReLU(0.2, inplace=True)
def forward(self,x):
return self.act(self.conv(self.upsample(x)))
class DenseResidualBlock(nn.Module):
def __init__(self, in_channels, channels = 32, residual_beta = 0.2):
super().__init__()
self.residual_beta = residual_beta
self.blocks = nn.ModuleList()
for i in range(5):
self.blocks.append(
ConvBlock(in_channels + channels * i, channels if i<=3 else in_channels,
kernel_size = 3,stride = 1, padding = 1, use_act=True if i<=3 else False)
)
def forward(self,x):
new_inputs = x
for block in self.blocks:
out = block(new_inputs)
new_inputs = torch.cat([new_inputs,out],dim = 1)
return self.residual_beta * out + x
class RRDB(nn.Module):
def __init__(self, in_channels, residual_beta = 0.2):
super().__init__()
self.residual_beta = residual_beta
self.rrdb = nn.Sequential(*[DenseResidualBlock(in_channels) for _ in range(3)])
def forward(self,x):
return self.rrdb(x) * self.residual_beta + x
class Generator(nn.Module):
def __init__(self, in_channels = 3, num_channels = 64, num_blocks = 23):
super().__init__()
self.initial = nn.Conv2d(in_channels,num_channels,kernel_size=3,stride=1,padding=1,bias=True)
self.residuals = nn.Sequential(*[RRDB(num_channels) for _ in range(num_blocks)])
self.conv = nn.Conv2d(num_channels,num_channels,kernel_size=3, stride=1, padding=1)
self.upsamples = nn.Sequential(
UpsampleBlock(num_channels), UpsampleBlock(num_channels),
)
self.final = nn.Sequential(
nn.Conv2d(num_channels, num_channels, 3, 1, 1, bias=True),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(num_channels, in_channels, 3, 1, 1, bias=True),
)
def forward(self,x):
initial = self.initial(x)
x = self.residuals(initial)
x = self.conv(x) + initial
x = self.upsamples(x)
return self.final(x)
class Discriminator(nn.Module):
def __init__(self, in_channels=3, features=[64, 64, 128, 128, 256, 256, 512, 512]):
super().__init__()
blocks = []
for idx, feature in enumerate(features):
blocks.append(
ConvBlock(
in_channels,
feature,
kernel_size=3,
stride=1 + idx % 2,
padding=1,
use_act=True,
),
)
in_channels = feature
self.blocks = nn.Sequential(*blocks)
self.classifier = nn.Sequential(
nn.AdaptiveAvgPool2d((6, 6)),
nn.Flatten(),
nn.Linear(512 * 6 * 6, 1024),
nn.LeakyReLU(0.2, inplace=True),
nn.Linear(1024, 1),
)
def forward(self, x):
x = self.blocks(x)
return self.classifier(x)
def initialize_weights(model, scale=0.1):
for m in model.modules():
if isinstance(m , nn.Conv2d):
nn.init.kaiming_normal_(m.weight.data)
m.weight.data *= scale
elif isinstance(m, nn.Linear):
nn.init.kaiming_normal_(m.weight.data)
m.weight.data *= scale
def test():
low_resolution = 24 # 96x96 -> 24x24
with torch.cuda.amp.autocast():
x = torch.randn((5, 3, low_resolution, low_resolution))
gen = Generator()
gen_out = gen(x)
disc = Discriminator()
disc_out = disc(gen_out)
print(gen_out.shape)
print(disc_out.shape)
# print(gen.parameters)
# print(disc.parameters)
if __name__ == "__main__":
test()