Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

multiSampleComparisonClonalCN Error in vegaMC_R(mtx = mtx, output_file_name = paste("./output/", sample, : NA/NaN/Inf in foreign function call (arg 1) #117

Open
Prakrithi-P opened this issue Jul 4, 2024 · 1 comment

Comments

@Prakrithi-P
Copy link

Hi,
Thanks for the wonderful tool. However, I have been facing some issues. When I run the single sample pipeline, it works fine (some samples throw an error which I had raised in an already open issue). When I combine multiple samples, I get the following error:

Error in vegaMC_R(mtx = mtx, output_file_name = paste("./output/", sample, : NA/NaN/Inf in foreign function call (arg 1)
Traceback:

  1. multiSampleComparisonClonalCN(listCountMtx, listNormCells, analysisName = "P5_combined")
  2. lapply(names(listCountMtx), function(x) {
    . pipelineCNA(listCountMtx[[x]], norm_cell = listNormCells[[x]],
    . sample = x, SUBCLONES = FALSE, ClonalCN = TRUE, par_cores = par_cores,
    . organism = organism)
    . })
  3. FUN(X[[i]], ...)
  4. pipelineCNA(listCountMtx[[x]], norm_cell = listNormCells[[x]],
    . sample = x, SUBCLONES = FALSE, ClonalCN = TRUE, par_cores = par_cores,
    . organism = organism)
  5. classifyTumorCells(res_proc$count_mtx_norm, res_proc$count_mtx_annot,
    . sample, par_cores = par_cores, ground_truth = NULL, norm_cell_names = norm_cell,
    . SEGMENTATION_CLASS = TRUE, SMOOTH = TRUE, beta_vega = beta_vega)
  6. getBreaksVegaMC(mtx_vega, annot_mtx[, 3], sample, beta_vega)
  7. vegaMC_R(mtx = mtx, output_file_name = paste("./output/", sample,
    . "vega_output"), beta = beta_vega)

Could you please help me fix this?
code used:

List of matrices names

matrix_names <- c('P5_N','P5_SCC_BCC')

Create an empty list

listCountMtx <- list()

Populate the list with matrices

for (name in matrix_names) {
listCountMtx[[name]] <- get(name)
}

List of normal cell

N_P5SCC<-P5_SCC_BCC[,c('AAACGGGCATTGCGGC-2',
'AAAGCAAGTCTGATCA-2',
'AAAGTAGCAGGATTGG-2',
'AAAGTAGCATTTCAGG-2',
'AAATGCCAGACTCGGA-2',
'AACACGTGTGTAAGTA-2',
'AACTCAGAGTGGTAAT-2',
'AACTCTTAGGCAATTA-2',
'AAGGAGCGTAATAGCA-2',
'AATCGGTCATACAGCT-2',
'ACACCCTAGGCTAGAC-2',
'ACACCCTCAGGAACGT-2',
'ACACCGGGTCCAGTAT-2',
'ACAGCTAGTTGATTGC-2',
'ACATCAGGTCTAGTGT-2',
'ACGATACCAAATCCGT-2',
'ACGATACGTAAACCTC-2',
'ACGCAGCAGTAGATGT-2',
'ACGCAGCGTCAGAGGT-2',
'ACGGAGAAGTGTCCCG-2',
'ACGGGCTGTCCGTTAA-2',
'ACTATCTCATCCAACA-2',
'ACTGAACGTGCTAGCC-2',
'ACTGAGTGTGATGCCC-2',
'ACTGTCCAGGATGTAT-2')]
#matrix_names <- c('P1_N','P1_SCC','P2_N','P2_SCC1','P2_SCC2','P3_IEC','P3_N','P4_N','P4_SCC','P5_N','P5_SCC_BCC')
matrix_names <- c('P5_N','N_P5SCC')

Create an empty list

listNormCells <- list()

Populate the list with matrices

for (name in matrix_names) {
listNormCells[[name]] <- get(name)
}

res5<-multiSampleComparisonClonalCN(listCountMtx, listNormCells, analysisName="P5_combined")

Fixing this would be really helpful for my project.

Thanks!
Prakrithi

@Prakrithi-P
Copy link
Author

Update: I realized I had to specify a list of the list of normal cells and not a list of normal cell matrices.

However, I get the error
[1] " raw data - genes: 34937 cells: 2887"
[1] "1) Filter: cells > 200 genes"
[1] "filtered out 183 cells past filtering 2708 cells"
[1] "low data quality"
[1] "2) Filter: genes > 5% of cells"
[1] "5959 genes past filtering"
[1] "3) Annotations gene coordinates"
[1] "5607 genes annotated"
[1] "4) Filter: genes involved in the cell cycle"
[1] "5283 genes past filtering "
[1] "5) Filter: cells > 5genes per chromosome "
[1] "6) Log Freeman Turkey transformation"
[1] "A total of 2245 cells, 5283 genes after preprocessing"
[1] "7) Measuring baselines (confident normal cells)"
Error in count_mtx - basel: non-conformable arrays
Traceback:

  1. multiSampleComparisonClonalCN(listCountMtx, main_list, analysisName = "P5_combined")
  2. lapply(names(listCountMtx), function(x) {
    . pipelineCNA(listCountMtx[[x]], norm_cell = listNormCells[[x]],
    . sample = x, SUBCLONES = FALSE, ClonalCN = TRUE, par_cores = par_cores,
    . organism = organism)
    . })
  3. FUN(X[[i]], ...)
  4. pipelineCNA(listCountMtx[[x]], norm_cell = listNormCells[[x]],
    . sample = x, SUBCLONES = FALSE, ClonalCN = TRUE, par_cores = par_cores,
    . organism = organism)
  5. classifyTumorCells(res_proc$count_mtx_norm, res_proc$count_mtx_annot,
    . sample, par_cores = par_cores, ground_truth = NULL, norm_cell_names = norm_cell,
    . SEGMENTATION_CLASS = TRUE, SMOOTH = TRUE, beta_vega = beta_vega)

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant