-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
414 lines (352 loc) · 15.5 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
# -*- coding: utf-8 -*-
# main.py
# author : Antoine Passemiers
from wynona.prot.contact_map import ContactMap
from wynona.prot.data_manager import DataManager
from wynona.prot.evaluation import Evaluation
from wynona.prot.exceptions import EarlyStoppingException
from wynona.prot.utils import *
from wynona.parsers.parse import apply_apc
from wynona.nn import ConvNet, BinaryCrossEntropy
from wynona.nn import Hyperoptimizer
from gaussfold import GaussFold, Optimizer, tm_score, rmsd
import torch
from torch.autograd import Variable
import os
import copy
import random
import numpy as np
import matplotlib.pyplot as plt
import sys
#sys.stdout = open('out.txt', 'w', buffering=1)
DEBUG = False
DATA_PATH = 'data'
TEMP_PATH = '../out/temp'
min_aa_separation = 6
HYPER_PARAM_SPACE = {
'activation': ['leakyrelu'],
'batch_size': [4],
'bn_momentum': [0.3],
'bn_track_running_stats': [False],
'learning_rate': [1e-4],
'l2_penalty': [1e-4],
'momentum_decay_first_order': [0.5],
'momentum_decay_second_order': [0.999],
'use_batch_norm': [True],
"use_global_features": [True],
'kernel_size': [7],
'num_kernels': [128],
'num_global_modules': [3],
'num_1d_modules': [18],
'num_2d_modules': [18]
}
"""
HYPER_PARAM_SPACE = {
'activation': ['relu', 'elu', 'leakyrelu', 'tanh'],
'batch_size': [1, 2, 4, 8, 16, 32],
'bn_momentum': [None] + [float(x) for x in np.arange(0.1, 1.0, 0.1)],
'bn_track_running_stats': [True, False],
'learning_rate': [float(x) for x in np.power(10., -np.arange(3, 6, 0.5))],
'l2_penalty': [float(x) for x in np.power(10., -np.arange(3, 6, 0.5))],
'momentum_decay_first_order': [0.5],
'momentum_decay_second_order': [0.999],
'use_batch_norm': [True, False],
"use_global_features": [True, False],
'kernel_size': [3, 5, 7],
'num_kernels': [8, 16, 32, 64, 128],
'num_global_modules': [int(x) for x in np.arange(2, 11)],
'num_1d_modules': [int(x) for x in np.arange(2, 11)],
'num_2d_modules': [int(x) for x in np.arange(2, 11)]
}
"""
n_0d_features = 1
n_1d_features = 122
n_2d_features = 4
TARGET_CONTACT_THRESHOLD_ID = 2
contact_thresholds = [6., 7.5, 8., 8.5, 10.]
target_contact_threshold = 8.
if DEBUG:
training_set_name = 'debug'
validation_set_name = 'debug_val'
max_evals = 1
early_stopping = 100
num_epochs = 1000
num_steps_for_eval = 20
else:
training_set_name = 'training_set_2'
validation_set_name = 'validation_set_2'
max_evals = 1
early_stopping = 1000
num_epochs = 50000
num_steps_for_eval = 50
def feature_set_to_tensors(feature_set, remove_diag=False):
distances = feature_set.distances
L = distances.shape[1]
print(feature_set.prot_name, L)
contacts = list()
for contact_threshold in contact_thresholds:
cmap = ContactMap(distances < contact_threshold)
if remove_diag:
cmap = cmap.in_range(min_aa_separation, None, symmetric=True, value=np.nan)
contacts.append(cmap.asarray())
contacts = np.asarray(contacts, dtype=np.double)[np.newaxis, ...]
Y = torch.as_tensor(contacts, dtype=torch.float32)
Y = Variable(Y.type(torch.Tensor)) # TODO
X_0D = torch.as_tensor(np.asarray(feature_set.features['global']['values']), dtype=torch.float32)
if X_0D.size()[0] >= 2:
X_0D[0] = min(X_0D[0] / 1000., 1.)
#X_0D[1] = min(X_0D[1] / 10000., 1.)
X_1D = torch.as_tensor(np.asarray(feature_set.features['1-dim']['values']), dtype=torch.float32)
X_2D = torch.as_tensor(np.asarray(feature_set.features['2-dim']['values']), dtype=torch.float32)
X = (X_0D, X_1D, X_2D)
return X, Y
def train_model(data_manager, params, state_dict_path=None):
data_manager.load('training_set')
#validation_set = list()
#for feature_set in data_manager.sample(20):
# x, y = feature_set_to_tensors(feature_set, remove_diag=False)
# validation_set.append((X, Y))
# Initialize model
model = ConvNet(
n_0d_features,
n_1d_features,
n_2d_features,
len(contact_thresholds),
nonlinearity=params['activation'],
use_global_features=params['use_global_features'],
kernel_size=params['kernel_size'],
num_kernels=params['num_kernels'],
num_global_modules=params['num_global_modules'],
num_1d_modules=params['num_1d_modules'],
num_2d_modules=params['num_2d_modules'],
use_batch_norm=params['use_batch_norm'],
bn_momentum=params['bn_momentum'],
bn_track_running_stats=params['bn_track_running_stats'])
model.init_weights()
model.train() # Activate dropout, batchnorm, etc.
# Initialize optimizer
b1 = params['momentum_decay_first_order']
b2 = params['momentum_decay_second_order']
optimizer = torch.optim.Adam(
model.parameters(),
lr=params['learning_rate'],
betas=(b1, b2),
weight_decay=params['l2_penalty'])
# Initialize loss
criterion = BinaryCrossEntropy()
print('Training model...')
training_ppv, validation_ppv, training_loss = list(), list(), list()
step = 1
n_steps_without_improvement = 0
best_score = -np.inf
try:
while True:
X, Y = list(), list()
for feature_set in data_manager.sample(params['batch_size']):
x, y = feature_set_to_tensors(feature_set, remove_diag=False)
X.append(x)
Y.append(y)
# Optimization step
print('\tTraining G...')
optimizer.zero_grad()
print('\t\tForward pass...')
predicted = model.forward(X)
print('\t\tBackward pass...')
loss = criterion(predicted[0], Y) # TODO: predicted[0] -> predicted ?
loss.backward()
training_loss.append(loss.item())
print('\t\tUpdate parameters...')
optimizer.step()
# Compute best-L PPV on current batch
evaluation = Evaluation()
for pred_map, target_map in zip(predicted, Y):
pred_cmap = ContactMap(np.squeeze(
pred_map.data.numpy())[TARGET_CONTACT_THRESHOLD_ID, :, :])
target_cmap = ContactMap(np.squeeze(
target_map.data.numpy())[TARGET_CONTACT_THRESHOLD_ID, :, :])
evaluation.add('-', '-', pred_cmap, target_cmap, min_aa_separation)
avg_best_l_ppv = evaluation.get('-', 'PPV', criterion='L')
training_ppv.append(avg_best_l_ppv)
print('\tBest-L PPV on current batch: %f' % avg_best_l_ppv)
if step % num_steps_for_eval == 0:
# Compute best-L PPV on validation set
predicted_maps = model.forward([X for X, Y in validation_set])
target_maps = [Y for X, Y in validation_set]
evaluation = Evaluation()
for i in range(len(validation_set)):
pred_cmap = ContactMap(np.squeeze(
predicted_maps[i].data.numpy())[TARGET_CONTACT_THRESHOLD_ID, :, :])
target_cmap = ContactMap(np.squeeze(
target_maps[i].data.numpy())[TARGET_CONTACT_THRESHOLD_ID, :, :])
evaluation.add('-', '-', pred_cmap, target_cmap, min_aa_separation)
avg_best_l_ppv = evaluation.get('-', 'PPV', criterion='L')
validation_ppv.append(avg_best_l_ppv)
print('\tBest-L PPV on validation set: %f' % avg_best_l_ppv)
# Check if Best-L PPV has increased over last k steps
if validation_ppv[-1] <= best_score:
n_steps_without_improvement += num_steps_for_eval
if n_steps_without_improvement >= early_stopping:
raise EarlyStoppingException()
else:
torch.save(model.state_dict(), state_dict_path) # Checkpoint
n_steps_without_improvement = 0
best_score = validation_ppv[-1]
print('End of step %i' % step)
step += 1
except EarlyStoppingException:
print('Early stopping. Loss did not decrease during last %i steps.' % early_stopping)
# Load model state from last checkpoint
model.load_state_dict(torch.load(state_dict_path))
# Deactivate dropout, batchnorm, etc.
model.eval()
# Compute Best-L PPV on validation set
avg_best_l_ppv = evaluate(data_manager, model)
return {
'model': model,
'training_loss': training_loss,
'training_ppv': training_ppv,
'validation_ppv': validation_ppv,
'loss': -avg_best_l_ppv
}
def hyper_optimization():
data_manager = DataManager(DATA_PATH)
save_folder = 'hyperopt'
hyperoptimizer = Hyperoptimizer(
HYPER_PARAM_SPACE,
lambda params: train_model(
data_manager,
params,
state_dict_path=os.path.join(TEMP_PATH, 'model.pt')),
save_folder,
max_evals=max_evals)
hyperoptimizer.run()
def evaluate(data_manager, model):
validation_set = list()
sequence_names = list()
target_maps = list()
data_manager = DataManager(DATA_PATH)
for feature_set in data_manager.proteins(dataset=validation_set_name):
sequence_names.append(feature_set.prot_name)
X, Y = feature_set_to_tensors(feature_set)
target_maps.append(Y)
validation_set.append(X)
predicted_maps = model.forward(validation_set)
# Saves short-range PPV, medium-range PPV, long-range PPV, MCC, accuracy, etc.
evaluation = Evaluation()
for i in range(len(validation_set)):
seq_name = sequence_names[i]
pred_cmap = ContactMap(np.squeeze(
predicted_maps[i].data.numpy())[TARGET_CONTACT_THRESHOLD_ID, :, :])
target_cmap = ContactMap(np.squeeze(
target_maps[i].data.numpy())[TARGET_CONTACT_THRESHOLD_ID, :, :])
plt.imshow(target_cmap)
plt.show()
plt.imshow(pred_cmap)
plt.show()
entry = evaluation.add('-', '-', pred_cmap, target_cmap, min_aa_separation)
print('PPV for protein %s: %f' % (seq_name, entry['PPV']))
avg_best_l_ppv = evaluation.get('-', 'PPV', criterion='L/5')
print('\nAverage best-L PPV: %f\n' % avg_best_l_ppv)
return avg_best_l_ppv
def load_model(name='model1.pt'):
print('Loading model %s' % name)
# Initialize model
model = ConvNet(
n_0d_features,
n_1d_features,
n_2d_features,
len(contact_thresholds),
nonlinearity='leakyrelu',
use_global_features=True,
kernel_size=7,
num_kernels=128,
num_global_modules=3,
num_1d_modules=18,
num_2d_modules=18,
use_batch_norm=True,
bn_momentum=0.3,
bn_track_running_stats=False)
state_dict_path = os.path.join(TEMP_PATH, name)
model.load_state_dict(torch.load(state_dict_path))
model.eval()
return model
def predict():
validation_set, sequence_names, target_maps, all_coords, all_ssp, all_Meff = list(), list(), list(), list(), list(), list()
data_manager = DataManager(DATA_PATH)
for feature_set in data_manager.proteins(dataset='benchmark_set_membrane'):
sequence_names.append(feature_set.prot_name)
X, Y = feature_set_to_tensors(feature_set)
validation_set.append(X)
target_maps.append(Y)
all_coords.append(feature_set.coordinates)
all_ssp.append(feature_set.ssp)
all_Meff.append(np.sum(feature_set.msa_weights))
print('Predicting...')
predicted_maps = dict()
N_MODELS = 7
for k in range(N_MODELS):
model = load_model(name='model%i.pt' % (k+1))
predicted_maps[k] = [np.squeeze(Y.data.numpy()) for Y in model.forward(validation_set)]
print('Evaluating...')
# Saves short-range PPV, medium-range PPV, long-range PPV, MCC, accuracy, etc.
print('Name, N, Meff, PPV, PPV/2, PPV/5, PPV/10, PPV-short, PPV/2-short, PPV/5-short, PPV/10-short, PPV-medium, PPV/2-medium, PPV/5-medium, PPV/10-medium, PPV-long, PPV/2-long, PPV/5-long, PPV/10-long, TM-score, RMSD')
evaluation = Evaluation()
for i in range(len(validation_set)):
seq_name = sequence_names[i]
pred_cmap = ContactMap(np.mean(np.asarray(
[predicted_maps[k][i][TARGET_CONTACT_THRESHOLD_ID, :, :] for k in range(N_MODELS)]), axis=0))
Meff = all_Meff[i]
target_cmap = ContactMap(np.squeeze(
target_maps[i].data.numpy())[TARGET_CONTACT_THRESHOLD_ID, :, :])
evaluation.add('-', seq_name, pred_cmap, target_cmap, min_aa_separation)
coords_target, ssp = all_coords[i], all_ssp[i]
gf = GaussFold(sep=1, n_init_sols=1)
gf.optimizer = Optimizer(
use_lbfgs=True, # Use L-BFGS for improving new solutions
pop_size=1000, # Population size
n_iter=300000, # Maximum number of iterations
partition_size=20, # Partition size for the selection of parents
mutation_rate=0.5, # Percentage of child's points to be mutated
mutation_std=.1, # Stdv of mutation noise
init_std=30., # Stdv for randomly generating initial solutions
early_stopping=20000) # Maximum number of iterations without improvement
coords_predicted = gf.run(pred_cmap.asarray(), ssp, verbose=False)
tm = tm_score(coords_predicted, coords_target)
r = rmsd(coords_predicted, coords_target)
print('%s, %i, %f, %f, %f, %f, %f, %f, %f, %f, %f, %f, %f, %f, %f, %f, %f, %f, %f, %f, %f' % (
seq_name,
len(pred_cmap.asarray()),
Meff,
evaluation.get('-', 'PPV', criterion='L', seq_name=seq_name),
evaluation.get('-', 'PPV', criterion='L/2', seq_name=seq_name),
evaluation.get('-', 'PPV', criterion='L/5', seq_name=seq_name),
evaluation.get('-', 'PPV', criterion='L/10', seq_name=seq_name),
evaluation.get('-', 'PPV-short', criterion='L', seq_name=seq_name),
evaluation.get('-', 'PPV-short', criterion='L/2', seq_name=seq_name),
evaluation.get('-', 'PPV-short', criterion='L/5', seq_name=seq_name),
evaluation.get('-', 'PPV-short', criterion='L/10', seq_name=seq_name),
evaluation.get('-', 'PPV-medium', criterion='L', seq_name=seq_name),
evaluation.get('-', 'PPV-medium', criterion='L/2', seq_name=seq_name),
evaluation.get('-', 'PPV-medium', criterion='L/5', seq_name=seq_name),
evaluation.get('-', 'PPV-medium', criterion='L/10', seq_name=seq_name),
evaluation.get('-', 'PPV-long', criterion='L', seq_name=seq_name),
evaluation.get('-', 'PPV-long', criterion='L/2', seq_name=seq_name),
evaluation.get('-', 'PPV-long', criterion='L/5', seq_name=seq_name),
evaluation.get('-', 'PPV-long', criterion='L/10', seq_name=seq_name),
tm, r))
def investigate():
data_manager = DataManager(DATA_PATH)
target_maps = list()
for feature_set in data_manager.proteins(dataset='debug'):
_, Y = feature_set_to_tensors(feature_set)
target_maps.append(Y)
cmap = ContactMap(np.squeeze(target_maps[0].data.numpy())[2])
predicted_cmap = ContactMap(np.load('pred/pred/T0767-D1.npy'))
L = cmap.shape[0]
print(cmap.shape, predicted_cmap.shape)
comparative_plot(cmap, predicted_cmap, top=L/10)
plt.show()
#investigate()
#predict()
hyper_optimization()
#plot_weights()