From a1294ceb4819fa91035921b9358775db24b204b0 Mon Sep 17 00:00:00 2001 From: AngusG Date: Tue, 15 Aug 2017 13:50:14 -0400 Subject: [PATCH] add script for cleaning up edges of integer masks --- post-process.py | 102 ++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 102 insertions(+) create mode 100644 post-process.py diff --git a/post-process.py b/post-process.py new file mode 100644 index 0000000..81f2945 --- /dev/null +++ b/post-process.py @@ -0,0 +1,102 @@ +import argparse +import numpy as np +import matplotlib.pyplot as plt + +from scipy import ndimage + +X_LOW = 80 +X_UPP = 120 + +Y_LOW = X_LOW +Y_UPP = X_UPP + +MAX_VALID_CLASS = 5 + + +if __name__ == '__main__': + + parser = argparse.ArgumentParser() + parser.add_argument('mask', help='path to integer mask to clean') + parser.add_argument( + '--zoom', help="zoom into area bounded by X_LOW, X_UPP, Y_LOW, Y_UPP", action="store_true") + args = parser.parse_args() + + orig_mask = plt.imread(args.mask) + max_px = orig_mask.max() + min_px = orig_mask.min() + + # valid classes are 0 through 5 + valid_classes = [] + hist, bin_edges = np.histogram( + orig_mask, bins=MAX_VALID_CLASS + 1, range=(0, MAX_VALID_CLASS + 1)) + class_area_pct = np.zeros(len(hist)) + + for i in range(len(hist)): + class_area_pct[i] = 100 * float(hist[i] / np.sum(hist)) + # 1.0% is an arbitrary choice here that seemed to work well + if class_area_pct[i] > 1.0: + print('class %d is %.2f%% by volume' % (i, class_area_pct[i])) + valid_classes.append(i) + + clean_mask = orig_mask.copy() + valid_class_arr = np.asarray(valid_classes) + print(valid_class_arr) + for i in range(len(hist)): + if i not in valid_classes: + # assign the closest valid class label + new_class_label = valid_class_arr[ + np.argmin(np.abs(valid_class_arr - i))] + print('Replacing instances of class %d (area %.2f%%) with valid class %d (area %.2f%%)' % ( + i, class_area_pct[i], new_class_label, class_area_pct[new_class_label])) + clean_mask[orig_mask == i] = new_class_label + + out_of_range_pct = 100 * \ + float( + np.sum(clean_mask[orig_mask > MAX_VALID_CLASS]) / np.sum(hist)) + print('Replacing out of range classes (area %.2f%%) with top valid class %d (area %.2f%%)' % ( + out_of_range_pct, MAX_VALID_CLASS, class_area_pct[MAX_VALID_CLASS])) + clean_mask[orig_mask > MAX_VALID_CLASS] = MAX_VALID_CLASS + + plt.close('all') + + plt.figure() + if args.zoom: + plt.imshow(orig_mask[X_LOW:X_UPP, Y_LOW:Y_UPP], + vmin=min_px, vmax=max_px) + else: + plt.imshow(orig_mask, vmin=min_px, vmax=max_px) + plt.title('original mask') + + plt.figure() + if args.zoom: + plt.imshow(clean_mask[X_LOW:X_UPP, Y_LOW:Y_UPP], + vmin=min_px, vmax=max_px) + else: + plt.imshow(clean_mask, vmin=min_px, vmax=max_px) + plt.title('histogram cleaned mask') + + ### Now median filter the histogram cleaned image ### + median_filter_size = 5 # Hyperparameter + clean_mask = ndimage.median_filter(clean_mask, size=median_filter_size) + + plt.figure() + if args.zoom: + plt.imshow(clean_mask[X_LOW:X_UPP, + Y_LOW:Y_UPP], vmin=min_px, vmax=max_px) + else: + plt.imshow(clean_mask, vmin=min_px, vmax=max_px) + plt.title('median filter mask (%dx%d)' % + (median_filter_size, median_filter_size)) + + morphology_size = 3 # Hyperparameter + clean_mask = ndimage.grey_dilation( + clean_mask, size=(morphology_size, morphology_size)) + + plt.figure() + if args.zoom: + plt.imshow(clean_mask[X_LOW:X_UPP, + Y_LOW:Y_UPP], vmin=min_px, vmax=max_px) + else: + plt.imshow(clean_mask, vmin=min_px, vmax=max_px) + plt.title('morphology (%dx%d)' % (morphology_size, morphology_size)) + plt.show()