-
Notifications
You must be signed in to change notification settings - Fork 3
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
add script for cleaning up edges of integer masks
- Loading branch information
Showing
1 changed file
with
102 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,102 @@ | ||
import argparse | ||
import numpy as np | ||
import matplotlib.pyplot as plt | ||
|
||
from scipy import ndimage | ||
|
||
X_LOW = 80 | ||
X_UPP = 120 | ||
|
||
Y_LOW = X_LOW | ||
Y_UPP = X_UPP | ||
|
||
MAX_VALID_CLASS = 5 | ||
|
||
|
||
if __name__ == '__main__': | ||
|
||
parser = argparse.ArgumentParser() | ||
parser.add_argument('mask', help='path to integer mask to clean') | ||
parser.add_argument( | ||
'--zoom', help="zoom into area bounded by X_LOW, X_UPP, Y_LOW, Y_UPP", action="store_true") | ||
args = parser.parse_args() | ||
|
||
orig_mask = plt.imread(args.mask) | ||
max_px = orig_mask.max() | ||
min_px = orig_mask.min() | ||
|
||
# valid classes are 0 through 5 | ||
valid_classes = [] | ||
hist, bin_edges = np.histogram( | ||
orig_mask, bins=MAX_VALID_CLASS + 1, range=(0, MAX_VALID_CLASS + 1)) | ||
class_area_pct = np.zeros(len(hist)) | ||
|
||
for i in range(len(hist)): | ||
class_area_pct[i] = 100 * float(hist[i] / np.sum(hist)) | ||
# 1.0% is an arbitrary choice here that seemed to work well | ||
if class_area_pct[i] > 1.0: | ||
print('class %d is %.2f%% by volume' % (i, class_area_pct[i])) | ||
valid_classes.append(i) | ||
|
||
clean_mask = orig_mask.copy() | ||
valid_class_arr = np.asarray(valid_classes) | ||
print(valid_class_arr) | ||
for i in range(len(hist)): | ||
if i not in valid_classes: | ||
# assign the closest valid class label | ||
new_class_label = valid_class_arr[ | ||
np.argmin(np.abs(valid_class_arr - i))] | ||
print('Replacing instances of class %d (area %.2f%%) with valid class %d (area %.2f%%)' % ( | ||
i, class_area_pct[i], new_class_label, class_area_pct[new_class_label])) | ||
clean_mask[orig_mask == i] = new_class_label | ||
|
||
out_of_range_pct = 100 * \ | ||
float( | ||
np.sum(clean_mask[orig_mask > MAX_VALID_CLASS]) / np.sum(hist)) | ||
print('Replacing out of range classes (area %.2f%%) with top valid class %d (area %.2f%%)' % ( | ||
out_of_range_pct, MAX_VALID_CLASS, class_area_pct[MAX_VALID_CLASS])) | ||
clean_mask[orig_mask > MAX_VALID_CLASS] = MAX_VALID_CLASS | ||
|
||
plt.close('all') | ||
|
||
plt.figure() | ||
if args.zoom: | ||
plt.imshow(orig_mask[X_LOW:X_UPP, Y_LOW:Y_UPP], | ||
vmin=min_px, vmax=max_px) | ||
else: | ||
plt.imshow(orig_mask, vmin=min_px, vmax=max_px) | ||
plt.title('original mask') | ||
|
||
plt.figure() | ||
if args.zoom: | ||
plt.imshow(clean_mask[X_LOW:X_UPP, Y_LOW:Y_UPP], | ||
vmin=min_px, vmax=max_px) | ||
else: | ||
plt.imshow(clean_mask, vmin=min_px, vmax=max_px) | ||
plt.title('histogram cleaned mask') | ||
|
||
### Now median filter the histogram cleaned image ### | ||
median_filter_size = 5 # Hyperparameter | ||
clean_mask = ndimage.median_filter(clean_mask, size=median_filter_size) | ||
|
||
plt.figure() | ||
if args.zoom: | ||
plt.imshow(clean_mask[X_LOW:X_UPP, | ||
Y_LOW:Y_UPP], vmin=min_px, vmax=max_px) | ||
else: | ||
plt.imshow(clean_mask, vmin=min_px, vmax=max_px) | ||
plt.title('median filter mask (%dx%d)' % | ||
(median_filter_size, median_filter_size)) | ||
|
||
morphology_size = 3 # Hyperparameter | ||
clean_mask = ndimage.grey_dilation( | ||
clean_mask, size=(morphology_size, morphology_size)) | ||
|
||
plt.figure() | ||
if args.zoom: | ||
plt.imshow(clean_mask[X_LOW:X_UPP, | ||
Y_LOW:Y_UPP], vmin=min_px, vmax=max_px) | ||
else: | ||
plt.imshow(clean_mask, vmin=min_px, vmax=max_px) | ||
plt.title('morphology (%dx%d)' % (morphology_size, morphology_size)) | ||
plt.show() |