forked from clarkkev/deep-coref
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_all.py
93 lines (68 loc) · 2.86 KB
/
run_all.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
import directories
import build_datasets
import preprocessing
import clustering_preprocessing
import clustering_learning
import pairwise_learning
import model_properties
import document
from document import Document
import os
OVERWRITE_EXISTING_MODELS = False
def setup():
preprocessing.main()
build_datasets.build_datasets(reduced=True)
build_datasets.build_datasets(reduced=False)
document.main()
def already_trained(name, weights):
return os.path.exists(directories.MODELS + name + '/' + weights + '.hdf5') and \
not OVERWRITE_EXISTING_MODELS
def pretrain(model_props):
if not already_trained('all_pairs', 'weights_140'):
model_props.set_name('all_pairs')
model_props.set_mode('all_pairs')
model_props.load_weights_from = None
pairwise_learning.train(model_props, n_epochs=150)
if not already_trained('top_pairs', 'weights_40'):
model_props.set_name('top_pairs')
model_props.set_mode('top_pairs')
model_props.load_weights_from = 'all_pairs'
model_props.weights_file = 'weights_140'
pairwise_learning.train(model_props, n_epochs=50)
def make_predictions(model_props, load_weights_from, datasets, save_scores=False):
model_props.load_weights_from = load_weights_from
model_props.weights_file = 'final_weights'
for dataset_name in datasets:
pairwise_learning.test(model_props=model_props, save_scores=save_scores, save_output=True,
dataset_name=dataset_name)
def train_clustering(cluster_props):
clustering_preprocessing.main('ranking')
cluster_props.load_weights_from = 'ranking'
cluster_props.weights_file = 'best_weights'
clustering_learning.main(cluster_props)
def train_pairwise(model_props, mode='ranking'):
pretrain(model_props)
model_props.set_name(mode)
model_props.set_mode(mode)
model_props.load_weights_from = 'top_pairs'
model_props.weights_file = 'weights_40'
pairwise_learning.train(model_props, n_epochs=100)
def train_and_test_pairwise(model_props, mode='ranking'):
train_pairwise(model_props, mode=mode)
model_props.set_name(mode)
make_predictions(model_props, mode, ["dev", "test"])
def acl2016():
model_props = model_properties.MentionRankingProps()
train_pairwise(model_props)
make_predictions(model_props, 'ranking', ["train", "dev", "test"], save_scores=True)
train_clustering(model_properties.ClusterRankingProps())
def emnlp2016():
model_props = model_properties.MentionRankingProps()
train_and_test_pairwise(model_props, mode='ranking')
train_and_test_pairwise(model_props, mode='reinforce')
train_and_test_pairwise(model_props, mode='reward_rescaling')
def train_best_model():
train_and_test_pairwise(model_properties.MentionRankingProps(), mode='reward_rescaling')
if __name__ == '__main__':
setup()
train_best_model()