forked from clarkkev/deep-coref
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexport.py
72 lines (57 loc) · 2.37 KB
/
export.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import argparse
import numpy as np
import directories
import utils
import pairwise_models
import clustering_models
import word_vectors
"""
Exports a model into a form readable by CoreNLP.
"""
def write_word_vectors(model, weights_name, path):
w = word_vectors.WordVectors(load=True)
w.vectors = np.asarray(pairwise_models.get_weights(model, weights_name)[0])
write_vectors(w, path + 'vectors_learned')
w = word_vectors.WordVectors(keep_all_words=True)
write_vectors(w, path + 'vectors_pretrained_all')
def write_weights(model, weights_name, path):
weights = pairwise_models.get_weights(model, weights_name)
w_ana = clustering_models.anaphoricity_weights(weights)
write_matrices(w_ana, path + 'anaphoricity_weights')
w_pair = clustering_models.pair_weights(weights)
first = w_pair[0]
s = 832 if directories.CHINESE else 650
write_matrices([first[:s, :], first[s:2 * s, :], first[2 * s:, :]] + w_pair[1:],
path + 'pairwise_weights')
def write_vectors(vectors, path):
with open(path, 'wb') as f:
for w, i in vectors.vocabulary.items():
if w == word_vectors.UNKNOWN_TOKEN:
w = "*UNK*"
f.write((w + " " + " ".join(map(str, vectors.vectors[i])) + "\n").encode('utf-8'))
def write_matrices(ms, fname):
print("Writing matrices to " + fname)
print([m.shape for m in ms])
with open(fname, 'w') as f:
for m in ms:
if len(m.shape) == 1:
f.write(" ".join(map(str, m)) + "\n")
else:
for i in range(m.shape[0]):
f.write(" ".join(map(str, m[i])) + "\n")
f.write("\n\n")
def parse_args():
parser = argparse.ArgumentParser(description='Exports a model to text for use elsewhere, such as corenlp')
parser.add_argument('--model_name', default='reward_rescaling',
help='Name of the model to export')
parser.add_argument('--weights_name', default='final_weights',
help='Name of the weights to export')
return parser.parse_args()
if __name__ == '__main__':
args = parse_args()
weights_name = args.weights_name
model_name = args.model_name
path = directories.MODELS + model_name + "/exported_weights/"
utils.mkdir(path)
write_word_vectors(model_name, weights_name, path)
write_weights(model_name, weights_name, path)