-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathoptimization.c
70 lines (55 loc) · 2.64 KB
/
optimization.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
//
// Created by а on 14.12.2019.
//
#include "optimization.h"
#include "matrix.h"
#include "vector.h"
#include <float.h>
#include <math.h>
struct Vector optimizeFletcherReeves(struct SquareMatrix hessian,
struct Vector rightEqVector,
struct Vector (*minusGradient)(struct Vector, struct SquareMatrix,
struct Vector)) {
double minGradDifference = 1e-7;
double gradDifference = DBL_MAX;
double minXDifference = 1e-7;
double xDifference = DBL_MAX;
struct Vector x = zeroVector(rightEqVector.size);
struct Vector xNew = initVector(x.size);
struct Vector basisVector = initVector(x.size);
struct Vector hessianBasisVector = initVector(x.size);
struct Vector basisVectorAlpha = initVector(x.size);
struct Vector previousX = zeroVector(x.size);
struct Vector prevBasisVectorBeta = initVector(x.size);
struct Vector previousMinusGrad = minusGradient(previousX, hessian, rightEqVector);
struct Vector previousBasisVector = copyVector(previousMinusGrad);
int iterationCounter = 0;
while (xDifference > minXDifference && (gradDifference > minGradDifference || iterationCounter > 0)) {
struct Vector minusGrad = minusGradient(previousX, hessian, rightEqVector);
double beta = scalarComposition(minusGrad, minusGrad) / scalarComposition(previousMinusGrad, previousMinusGrad);
multiplyVectorOnNumberBuffered(previousBasisVector, beta, prevBasisVectorBeta.vector);
addVectorBuffered(minusGrad, prevBasisVectorBeta, basisVector.vector);
dotProductBuffered(hessian, basisVector, hessianBasisVector.vector);
double alpha = scalarComposition(minusGrad, basisVector) /
scalarComposition(hessianBasisVector, basisVector);
multiplyVectorOnNumberBuffered(basisVector, alpha, basisVectorAlpha.vector);
addVectorBuffered(previousX, basisVectorAlpha, xNew.vector);
copyToVector(xNew, x);
gradDifference = meanAbsoluteErrorVector(minusGrad, previousMinusGrad);
xDifference = meanAbsoluteErrorVector(x, previousX);
copyToVector(x, previousX);
copyToVector(minusGrad, previousMinusGrad);
copyToVector(basisVector, previousBasisVector);
freeVector(minusGrad);
++iterationCounter;
}
freeVector(xNew);
freeVector(previousX);
freeVector(previousMinusGrad);
freeVector(previousBasisVector);
freeVector(prevBasisVectorBeta);
freeVector(basisVectorAlpha);
freeVector(hessianBasisVector);
freeVector(basisVector);
return x;
}