forked from MarkusPic/intensity_duration_frequency_analysis
-
Notifications
You must be signed in to change notification settings - Fork 0
/
example_python_api.py
39 lines (32 loc) · 1.39 KB
/
example_python_api.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
from idf_analysis import IntensityDurationFrequencyAnalyse
from idf_analysis.definitions import *
import pandas as pd
from os import path
import matplotlib.pyplot as plt
# sub-folder for the results
output_directory = path.join('ehyd_112086_idf_data')
# initialize of the analysis class
idf = IntensityDurationFrequencyAnalyse(series_kind=PARTIAL, worksheet=DWA, extended_durations=True)
# reading the pandas series of the precipitation (data from ehyd.gv.at - ID=112086)
series = pd.read_parquet('ehyd_112086.parquet')['precipitation']
# setting the series for the analysis
idf.set_series(series)
# auto-save the calculated parameter so save time for a later use
idf.auto_save_parameters(path.join(output_directory, 'idf_parameters.yaml'))
# --------
# plotting the IDF curves
fig, ax = idf.result_figure(color=True)
fig.set_size_inches(12, 8)
fig.tight_layout()
fig.savefig(path.join(output_directory, 'idf_curves_plot_color.png'), dpi=200)
plt.close(fig)
# -------
# plotting the idf curves in black and white
fig, ax = idf.result_figure(color=False)
fig.set_size_inches(12, 8)
fig.tight_layout()
fig.savefig(path.join(output_directory, 'idf_curves_plot.png'), dpi=200)
plt.close(fig)
# save the values of the idf curve as csv file
idf.result_table(add_names=False).to_csv(path.join(output_directory, 'idf_table_UNIX.csv'),
sep=',', decimal='.', float_format='%0.2f')