-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathdataset_prepare.py
339 lines (282 loc) · 12.9 KB
/
dataset_prepare.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
import glob, os, shutil, sys, json
from pathlib import Path
import pylab as plt
import trimesh
import open3d
from easydict import EasyDict
import numpy as np
from tqdm import tqdm
import utils
# Labels for all datasets
# -----------------------
sigg17_part_labels = ['---', 'head', 'hand', 'lower-arm', 'upper-arm', 'body', 'upper-lag', 'lower-leg', 'foot']
sigg17_shape2label = {v: k for k, v in enumerate(sigg17_part_labels)}
model_net_labels = [
'bathtub', 'bed', 'chair', 'desk', 'dresser', 'monitor', 'night_stand', 'sofa', 'table', 'toilet',
'wardrobe', 'bookshelf', 'laptop', 'door', 'lamp', 'person', 'curtain', 'piano', 'airplane', 'cup',
'cone', 'tent', 'radio', 'stool', 'range_hood', 'car', 'sink', 'guitar', 'tv_stand', 'stairs',
'mantel', 'bench', 'plant', 'bottle', 'bowl', 'flower_pot', 'keyboard', 'vase', 'xbox', 'glass_box'
]
model_net_shape2label = {v: k for k, v in enumerate(model_net_labels)}
cubes_labels = [
'apple', 'bat', 'bell', 'brick', 'camel',
'car', 'carriage', 'chopper', 'elephant', 'fork',
'guitar', 'hammer', 'heart', 'horseshoe', 'key',
'lmfish', 'octopus', 'shoe', 'spoon', 'tree',
'turtle', 'watch'
]
cubes_shape2label = {v: k for k, v in enumerate(cubes_labels)}
shrec11_labels = [
'armadillo', 'man', 'centaur', 'dinosaur', 'dog2',
'ants', 'rabbit', 'dog1', 'snake', 'bird2',
'shark', 'dino_ske', 'laptop', 'santa', 'flamingo',
'horse', 'hand', 'lamp', 'two_balls', 'gorilla',
'alien', 'octopus', 'cat', 'woman', 'spiders',
'camel', 'pliers', 'myScissor', 'glasses', 'bird1'
]
shrec11_shape2label = {v: k for k, v in enumerate(shrec11_labels)}
coseg_labels = [
'1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c',
]
coseg_shape2label = {v: k for k, v in enumerate(coseg_labels)}
def calc_mesh_area(mesh):
t_mesh = trimesh.Trimesh(vertices=mesh['vertices'], faces=mesh['faces'], process=False)
mesh['area_faces'] = t_mesh.area_faces
mesh['area_vertices'] = np.zeros((mesh['vertices'].shape[0]))
for f_index, f in enumerate(mesh['faces']):
for v in f:
mesh['area_vertices'][v] += mesh['area_faces'][f_index] / f.size
def prepare_edges_and_kdtree(mesh):
vertices = mesh['vertices']
faces = mesh['faces']
mesh['edges'] = [set() for _ in range(vertices.shape[0])]
for i in range(faces.shape[0]):
for v in faces[i]:
mesh['edges'][v] |= set(faces[i])
for i in range(vertices.shape[0]):
if i in mesh['edges'][i]:
mesh['edges'][i].remove(i)
mesh['edges'][i] = list(mesh['edges'][i])
max_vertex_degree = np.max([len(e) for e in mesh['edges']])
for i in range(vertices.shape[0]):
if len(mesh['edges'][i]) < max_vertex_degree:
mesh['edges'][i] += [-1] * (max_vertex_degree - len(mesh['edges'][i]))
mesh['edges'] = np.array(mesh['edges'], dtype=np.int32)
mesh['kdtree_query'] = []
t_mesh = trimesh.Trimesh(vertices=vertices, faces=faces, process=False)
n_nbrs = min(10, vertices.shape[0] - 2)
for n in range(vertices.shape[0]):
d, i_nbrs = t_mesh.kdtree.query(vertices[n], n_nbrs)
i_nbrs_cleared = [inbr for inbr in i_nbrs if inbr != n and inbr < vertices.shape[0]]
if len(i_nbrs_cleared) > n_nbrs - 1:
i_nbrs_cleared = i_nbrs_cleared[:n_nbrs - 1]
mesh['kdtree_query'].append(np.array(i_nbrs_cleared, dtype=np.int32))
mesh['kdtree_query'] = np.array(mesh['kdtree_query'])
assert mesh['kdtree_query'].shape[1] == (n_nbrs - 1), 'Number of kdtree_query is wrong: ' + str(mesh['kdtree_query'].shape[1])
def add_fields_and_dump_model(mesh_data, fileds_needed, out_fn, dataset_name, dump_model=True):
m = {}
for k, v in mesh_data.items():
if k in fileds_needed:
m[k] = v
for field in fileds_needed:
if field not in m.keys():
if field == 'labels':
m[field] = np.zeros((0,))
if field == 'dataset_name':
m[field] = dataset_name
if field == 'walk_cache':
m[field] = np.zeros((0,))
if field == 'kdtree_query' or field == 'edges':
prepare_edges_and_kdtree(m)
if dump_model:
np.savez(out_fn, **m)
return m
def get_labels(dataset_name, mesh, file, fn2labels_map=None):
v_labels_fuzzy = np.zeros((0,))
if dataset_name.startswith('coseg') or dataset_name == 'human_seg_from_meshcnn':
labels_fn = '/'.join(file.split('/')[:-2]) + '/seg/' + file.split('/')[-1].split('.')[-2] + '.eseg'
e_labels = np.loadtxt(labels_fn)
v_labels = [[] for _ in range(mesh['vertices'].shape[0])]
faces = mesh['faces']
fuzzy_labels_fn = '/'.join(file.split('/')[:-2]) + '/sseg/' + file.split('/')[-1].split('.')[-2] + '.seseg'
seseg_labels = np.loadtxt(fuzzy_labels_fn)
v_labels_fuzzy = np.zeros((mesh['vertices'].shape[0], seseg_labels.shape[1]))
edge2key = dict()
edges = []
edges_count = 0
for face_id, face in enumerate(faces):
faces_edges = []
for i in range(3):
cur_edge = (face[i], face[(i + 1) % 3])
faces_edges.append(cur_edge)
for idx, edge in enumerate(faces_edges):
edge = tuple(sorted(list(edge)))
faces_edges[idx] = edge
if edge not in edge2key:
v_labels_fuzzy[edge[0]] += seseg_labels[edges_count]
v_labels_fuzzy[edge[1]] += seseg_labels[edges_count]
edge2key[edge] = edges_count
edges.append(list(edge))
v_labels[edge[0]].append(e_labels[edges_count])
v_labels[edge[1]].append(e_labels[edges_count])
edges_count += 1
assert np.max(np.sum(v_labels_fuzzy != 0, axis=1)) <= 3, 'Number of non-zero labels must not acceeds 3!'
vertex_labels = []
for l in v_labels:
l2add = np.argmax(np.bincount(l))
vertex_labels.append(l2add)
vertex_labels = np.array(vertex_labels)
model_label = np.zeros((0,))
return model_label, vertex_labels, v_labels_fuzzy
else:
tmp = file.split('/')[-1]
model_name = '_'.join(tmp.split('_')[:-1])
if dataset_name.lower().startswith('modelnet'):
model_label = model_net_shape2label[model_name]
elif dataset_name.lower().startswith('cubes'):
model_label = cubes_shape2label[model_name]
elif dataset_name.lower().startswith('shrec11'):
model_name = file.split('/')[-3]
if fn2labels_map is None:
model_label = shrec11_shape2label[model_name]
else:
file_index = int(file.split('.')[-2].split('T')[-1])
model_label = fn2labels_map[file_index]
else:
raise Exception('Cannot find labels for the dataset')
vertex_labels = np.zeros((0,))
return model_label, vertex_labels, v_labels_fuzzy
def remesh(mesh_orig, target_n_faces, add_labels=False, labels_orig=None):
labels = labels_orig
if target_n_faces < np.asarray(mesh_orig.triangles).shape[0]:
mesh = mesh_orig.simplify_quadric_decimation(target_n_faces)
str_to_add = '_simplified_to_' + str(target_n_faces)
mesh = mesh.remove_unreferenced_vertices()
if add_labels and labels_orig.size:
labels = fix_labels_by_dist(np.asarray(mesh.vertices), np.asarray(mesh_orig.vertices), labels_orig)
else:
mesh = mesh_orig
str_to_add = '_not_changed_' + str(np.asarray(mesh_orig.triangles).shape[0])
return mesh, labels, str_to_add
def load_mesh(model_fn, classification=True):
# To load and clean up mesh - "remove vertices that share position"
if classification:
mesh_ = trimesh.load_mesh(model_fn, process=True)
mesh_.remove_duplicate_faces()
else:
mesh_ = trimesh.load_mesh(model_fn, process=False)
mesh = open3d.geometry.TriangleMesh()
mesh.vertices = open3d.utility.Vector3dVector(mesh_.vertices)
mesh.triangles = open3d.utility.Vector3iVector(mesh_.faces)
return mesh
def create_tmp_dataset(model_fn, p_out, n_target_faces):
fileds_needed = ['vertices', 'faces', 'edge_features', 'edges_map', 'edges', 'kdtree_query',
'label', 'labels', 'dataset_name']
if not os.path.isdir(p_out):
os.makedirs(p_out)
mesh_orig = load_mesh(model_fn)
mesh, labels, str_to_add = remesh(mesh_orig, n_target_faces)
labels = np.zeros((np.asarray(mesh.vertices).shape[0],), dtype=np.int16)
mesh_data = EasyDict({'vertices': np.asarray(mesh.vertices), 'faces': np.asarray(mesh.triangles), 'label': 0, 'labels': labels})
out_fn = p_out + '/tmp'
add_fields_and_dump_model(mesh_data, fileds_needed, out_fn, 'tmp')
def prepare_directory(dataset_name, pathname_expansion=None, p_out=None, n_target_faces=None, add_labels=True,
size_limit=np.inf, fn_prefix='', verbose=True, classification=True):
fileds_needed = ['vertices', 'faces', 'edges',
'label', 'labels', 'dataset_name', 'labels_fuzzy']
if not os.path.isdir(p_out):
os.makedirs(p_out)
filenames = glob.glob(pathname_expansion)
filenames.sort()
if len(filenames) > size_limit:
filenames = filenames[:size_limit]
for file in tqdm(filenames, disable=1 - verbose):
out_fn = p_out + '/' + fn_prefix + os.path.split(file)[1].split('.')[0]
mesh = load_mesh(file, classification=classification)
mesh_orig = mesh
mesh_data = EasyDict({'vertices': np.asarray(mesh.vertices), 'faces': np.asarray(mesh.triangles)})
if add_labels:
if type(add_labels) is list:
fn2labels_map = add_labels
else:
fn2labels_map = None
label, labels_orig, v_labels_fuzzy = get_labels(dataset_name, mesh_data, file, fn2labels_map=fn2labels_map)
else:
label = np.zeros((0, ))
for this_target_n_faces in n_target_faces:
mesh, labels, str_to_add = remesh(mesh_orig, this_target_n_faces, add_labels=add_labels, labels_orig=labels_orig)
mesh_data = EasyDict({'vertices': np.asarray(mesh.vertices), 'faces': np.asarray(mesh.triangles), 'label': label, 'labels': labels})
mesh_data['labels_fuzzy'] = v_labels_fuzzy
out_fc_full = out_fn + str_to_add
add_fields_and_dump_model(mesh_data, fileds_needed, out_fc_full, dataset_name)
# ------------------------------------------------------- #
def prepare_modelnet40():
n_target_faces = [1000, 2000, 4000]
labels2use = model_net_labels
for i, name in tqdm(enumerate(labels2use)):
for part in ['test', 'train']:
pin = 'datasets_raw/ModelNet40/' + name + '/' + part + '/'
p_out = 'datasets_processed/modelnet40/'
prepare_directory('modelnet40', pathname_expansion=pin + '*.off',
p_out=p_out, add_labels='modelnet', n_target_faces=n_target_faces,
fn_prefix=part + '_', verbose=False)
def prepare_cubes(labels2use=cubes_labels,
path_in='datasets_raw/from_meshcnn/cubes/',
p_out='datasets_processed/cubes'):
dataset_name = 'cubes'
if not os.path.isdir(p_out):
os.makedirs(p_out)
for i, name in enumerate(labels2use):
print('-->>>', name)
for part in ['test', 'train']:
pin = path_in + name + '/' + part + '/'
prepare_directory(dataset_name, pathname_expansion=pin + '*.obj',
p_out=p_out, add_labels=dataset_name, fn_prefix=part + '_', n_target_faces=[np.inf],
classification=False)
def prepare_seg_from_meshcnn(dataset, subfolder=None):
if dataset == 'human_body':
dataset_name = 'human_seg_from_meshcnn'
p_in2add = 'human_seg'
p_out_sub = p_in2add
p_ext = ''
elif dataset == 'coseg':
p_out_sub = dataset_name = 'coseg'
p_in2add = dataset_name + '/' + subfolder
p_ext = subfolder
path_in = 'datasets_raw/from_meshcnn/' + p_in2add + '/'
p_out = 'datasets_processed/' + p_out_sub + '_from_meshcnn/' + p_ext
for part in ['test', 'train']:
pin = path_in + '/' + part + '/'
prepare_directory(dataset_name, pathname_expansion=pin + '*.obj',
p_out=p_out, add_labels=dataset_name, fn_prefix=part + '_', n_target_faces=[np.inf],
classification=False)
# ------------------------------------------------------- #
def prepare_one_dataset(dataset_name):
dataset_name = dataset_name.lower()
if dataset_name == 'modelnet40' or dataset_name == 'modelnet':
prepare_modelnet40()
if dataset_name == 'shrec11':
print('To do later')
if dataset_name == 'cubes':
prepare_cubes()
# Semantic Segmentations
if dataset_name == 'human_seg':
prepare_seg_from_meshcnn('human_body')
if dataset_name == 'coseg':
prepare_seg_from_meshcnn('coseg', 'coseg_aliens')
prepare_seg_from_meshcnn('coseg', 'coseg_chairs')
prepare_seg_from_meshcnn('coseg', 'coseg_vases')
if __name__ == '__main__':
utils.config_gpu(False)
np.random.seed(1)
if len(sys.argv) != 2:
print('Use: python dataset_prepare.py <dataset name>')
print('For example: python dataset_prepare.py cubes')
print('Another example: python dataset_prepare.py all')
else:
dataset_name = sys.argv[1]
if dataset_name == 'all':
for dataset_name in ['cubes', 'human_seg', 'coseg', 'modelnet40']:
prepare_one_dataset(dataset_name)
else:
prepare_one_dataset(dataset_name)