-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtensor.py
53 lines (50 loc) · 1.84 KB
/
tensor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
# import torch
#
# # scalar is just a single number
# # vector is just a 1D list of number
# # matrix is a 2D list of number
# # vector is a ND list of number
# # ndim is the faces the data possess, like x, y, dept
# scalar = torch.tensor(10)
# vector = torch.tensor([1, 2, 4])
# matrix = torch.tensor([[2, 4, 6], [1, 3, 5]])
# tensor = torch.tensor([[[2, 2, 2],
# [4, 4, 4],
# [5, 5, 44]]])
# tensor1 = torch.tensor([[[2, 2, 2],
# [4, 4, 4],
# [5, 5, 44]], [[2, 2, 2],
# [4, 4, 4],
# [5, 5, 44]]])
#
# # random tensors
# ranMatrix = torch.rand(6, 4)
# ranTensor = torch.rand(2, 1, 1, 4)
# imageTensor = torch.rand(size=(255, 244, 3))
#
# # zeros tensors
# zeroMatrix = torch.zeros(5, 6)
# # ones tensors
# oneMatrix = torch.ones(2, 4)
#
# # range tensors
# rangeMatrix = torch.arange(1, 10)
# rangeMatrix1 = torch.arange(start=20, end= 200, step=50)
#
# # likes tensors
# zerolikes = torch.zeros_like(rangeMatrix1)
#
# if __name__ == '__main__':
# print(zeroMatrix * 2)
# print(oneMatrix * 0)
# print(rangeMatrix)
# print(rangeMatrix1)
# print(zerolikes)
# print('scalar shape', scalar.shape, 'scalar ndim', scalar.ndim)
# print('vector shape', vector.shape, 'vector ndim', vector.ndim)
# print('matrix shape', matrix.shape, 'matrix ndim', matrix.ndim)
# print('tensor shape', tensor.shape, 'tensor ndim', tensor.ndim)
# print('tensor1 shape', tensor1.shape, 'tensor1 ndim', tensor1.ndim)
# print('ranMatrix shape', ranMatrix.shape, 'ranMatrix ndim', ranMatrix.ndim, ranMatrix.size())
# print('imageTensor shape', imageTensor.shape, 'imageTensor ndim', imageTensor.ndim)
# print('ranTensor shape', ranTensor.shape, 'ranTensor ndim', ranTensor.ndim)