-
Notifications
You must be signed in to change notification settings - Fork 50
/
Copy pathclassification.py
70 lines (58 loc) · 3.02 KB
/
classification.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
"""
#################################
Classification after training the Model, modules and methods in this file evaluate the performance of the trained
model over the test dataset
Test Data: Item (8) on https://ieee-dataport.org/open-access/flame-dataset-aerial-imagery-pile-burn-detection-using-drones-uavs
Tensorflow Version: 2.3.0
GPU: Nvidia RTX 2080 Ti
OS: Ubuntu 18.04
################################
"""
#########################################################
# import libraries
import numpy as np
import tensorflow as tf
from tensorflow.keras.models import load_model
from plotdata import plot_confusion_matrix
from config import Config_classification
from config import new_size
batch_size = Config_classification.get('batch_size')
image_size = (new_size.get('width'), new_size.get('height'))
epochs = Config_classification.get('Epochs')
#########################################################
# Function definition
def classify():
"""
This function load the trained model from the previous task and evaluates the performance of that over the test
data set.
:return: None, Plot the Confusion matrix for the test data on the binary classification
"""
test_ds = tf.keras.preprocessing.image_dataset_from_directory(
"frames/Test", seed=1337, image_size=image_size, batch_size=batch_size, shuffle=True
)
model_fire = load_model('Output/Models/model_fire_resnet_not_weighted_40_no_metric_simple')
_ = model_fire.evaluate(test_ds, batch_size=batch_size)
best_model_fire = load_model('Output/Models/h5model/keras/save_at_25.h5')
results_eval = best_model_fire.evaluate(test_ds, batch_size=batch_size)
for name, value in zip(model_fire.metrics_names, results_eval):
print(name, ': ', value)
print()
cm = np.array([[results_eval[1], results_eval[4]], [results_eval[2], results_eval[3]]])
cm_plot_labels = ['Fire', 'No Fire']
plot_confusion_matrix(cm=cm, classes=cm_plot_labels, title='Confusion Matrix')
model_file = 'Output/Models/h5model/Keras_not_weighted_40_no_metric_simple/save_at_%d.h5' % 37
model_fire = load_model(model_file)
test_fire_ds = tf.keras.preprocessing.image_dataset_from_directory(
"frames/confusion_test/Fire_test", seed=1337, image_size=image_size, batch_size=batch_size, shuffle=True)
test_no_fire_ds = tf.keras.preprocessing.image_dataset_from_directory(
"frames/confusion_test/No_Fire_test", seed=1337, image_size=image_size, batch_size=batch_size, shuffle=True)
fire_eval = model_fire.evaluate(test_fire_ds)
no_fire_eval = model_fire.evaluate(test_no_fire_ds)
true_fire = len(tf.io.gfile.listdir("frames/confusion_test/Fire_test/Fire"))
true_no_fire = len(tf.io.gfile.listdir("frames/confusion_test/No_Fire_test/No_Fire"))
tp = fire_eval[1] * true_fire
fp = (1 - fire_eval[1]) * true_fire
tn = (1 - no_fire_eval[1]) * true_no_fire
fn = no_fire_eval[1] * true_no_fire
cm = np.array([[tp, fn], [fp, tn]], dtype=int)
plot_confusion_matrix(cm=cm, classes=cm_plot_labels, title='Confusion Matrix')