-
Notifications
You must be signed in to change notification settings - Fork 86
/
Copy pathomniglot.py
181 lines (150 loc) · 6.84 KB
/
omniglot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
# Adapted from https://github.com/pytorch/vision/blob/master/torchvision/datasets/omniglot.py
from PIL import Image
from os.path import join
import os
import torch.utils.data as data
from .utils import download_url, check_integrity, list_dir, list_files
class Omniglot(data.Dataset):
"""`Omniglot <https://github.com/brendenlake/omniglot>`_ Dataset.
Args:
root (string): Root directory of dataset where directory
``omniglot-py`` exists.
background (bool, optional): If True, creates dataset from the "background" set, otherwise
creates from the "evaluation" set. This terminology is defined by the authors.
transform (callable, optional): A function/transform that takes in an PIL image
and returns a transformed version. E.g, ``transforms.RandomCrop``
target_transform (callable, optional): A function/transform that takes in the
target and transforms it.
download (bool, optional): If true, downloads the dataset zip files from the internet and
puts it in root directory. If the zip files are already downloaded, they are not
downloaded again.
"""
folder = 'omniglot-py'
download_url_prefix = 'https://github.com/brendenlake/omniglot/raw/master/python'
zips_md5 = {
'images_background': '68d2efa1b9178cc56df9314c21c6e718',
'images_evaluation': '6b91aef0f799c5bb55b94e3f2daec811'
}
def __init__(self, root, background=True,
transform=None, target_transform=None,
download=False):
self.root = join(os.path.expanduser(root), self.folder)
self.background = background
self.transform = transform
self.target_transform = target_transform
if download:
self.download()
if not self._check_integrity():
raise RuntimeError('Dataset not found or corrupted.' +
' You can use download=True to download it')
self.target_folder = join(self.root, self._get_target_folder())
self._alphabets = list_dir(self.target_folder)
self._characters = sum([[join(a, c) for c in list_dir(join(self.target_folder, a))]
for a in self._alphabets], [])
self._character_images = [[(image, idx) for image in list_files(join(self.target_folder, character), '.png')]
for idx, character in enumerate(self._characters)]
self._flat_character_images = sum(self._character_images, [])
def __len__(self):
return len(self._flat_character_images)
def __getitem__(self, index):
"""
Args:
index (int): Index
Returns:
tuple: (image, target) where target is index of the target character class.
"""
image_name, character_class = self._flat_character_images[index]
image_path = join(self.target_folder, self._characters[character_class], image_name)
image = Image.open(image_path, mode='r').convert('L')
if self.transform:
image = self.transform(image)
if self.target_transform:
character_class = self.target_transform(character_class)
return image, character_class
def _check_integrity(self):
zip_filename = self._get_target_folder()
if not check_integrity(join(self.root, zip_filename + '.zip'), self.zips_md5[zip_filename]):
return False
return True
def download(self):
import zipfile
if self._check_integrity():
print('Files already downloaded and verified')
return
filename = self._get_target_folder()
zip_filename = filename + '.zip'
url = self.download_url_prefix + '/' + zip_filename
download_url(url, self.root, zip_filename, self.zips_md5[filename])
print('Extracting downloaded file: ' + join(self.root, zip_filename))
with zipfile.ZipFile(join(self.root, zip_filename), 'r') as zip_file:
zip_file.extractall(self.root)
def _get_target_folder(self):
return 'images_background' if self.background else 'images_evaluation'
def loadimgs(path,n = 0):
'''
path => Path of train directory or test directory
'''
X=[]
y = []
cat_dict = {}
lang_dict = {}
curr_y = n
# we load every alphabet seperately so we can isolate them later
for alphabet in os.listdir(path):
print("loading alphabet: " + alphabet)
lang_dict[alphabet] = [curr_y,None]
alphabet_path = os.path.join(path,alphabet)
# every letter/category has it's own column in the array, so load seperately
for letter in os.listdir(alphabet_path):
cat_dict[curr_y] = (alphabet, letter)
category_images=[]
letter_path = os.path.join(alphabet_path, letter)
# read all the images in the current category
for filename in os.listdir(letter_path):
image_path = os.path.join(letter_path, filename)
image = imread(image_path)
category_images.append(image)
y.append(curr_y)
try:
X.append(np.stack(category_images))
# edge case - last one
except ValueError as e:
print(e)
print("error - category_images:", category_images)
curr_y += 1
lang_dict[alphabet][1] = curr_y - 1
y = np.vstack(y)
X = np.stack(X)
return X,y,lang_dict
def get_batch(batch_size,s="train"):
"""
Create batch of n pairs, half same class, half different class
"""
if s == 'train':
X = Xtrain
categories = train_classes
else:
X = Xval
categories = val_classes
n_classes, n_examples, w, h = X.shape
# randomly sample several classes to use in the batch
categories = rng.choice(n_classes,size=(batch_size,),replace=False)
# initialize 2 empty arrays for the input image batch
pairs=[np.zeros((batch_size, h, w,1)) for i in range(2)]
# initialize vector for the targets
targets=np.zeros((batch_size,))
# make one half of it '1's, so 2nd half of batch has same class
targets[batch_size//2:] = 1
for i in range(batch_size):
category = categories[i]
idx_1 = rng.randint(0, n_examples)
pairs[0][i,:,:,:] = X[category, idx_1].reshape(w, h, 1)
idx_2 = rng.randint(0, n_examples)
# pick images of same class for 1st half, different for 2nd
if i >= batch_size // 2:
category_2 = category
else:
# add a random number to the category modulo n classes to ensure 2nd image has a different category
category_2 = (category + rng.randint(1,n_classes)) % n_classes
pairs[1][i,:,:,:] = X[category_2,idx_2].reshape(w, h,1)
return pairs, targets