-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpredict.py
161 lines (145 loc) · 6.17 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import io
import os
from typing import Optional, Any
import torch
import numpy as np
import cProfile
import pstats
from pstats import SortKey
import time
from cog import BasePredictor, Input, Path, BaseModel
import whisper
from whisper.model import Whisper, ModelDimensions
from whisper.tokenizer import LANGUAGES, TO_LANGUAGE_CODE
from whisper.utils import format_timestamp
class ModelOutput(BaseModel):
detected_language: str
transcription: str
segments: Any
translation: Optional[str]
txt_file: Optional[Path]
srt_file: Optional[Path]
class Predictor(BasePredictor):
def setup(self):
"""Loads whisper models into memory to make running multiple predictions efficient"""
with open(f"./weights/large-v2.pt", "rb") as fp:
checkpoint = torch.load(fp, map_location="cpu")
dims = ModelDimensions(**checkpoint["dims"])
self.model = Whisper(dims)
self.model.load_state_dict(checkpoint["model_state_dict"])
self.model.to("cuda")
def predict(
self,
audio: Path = Input(description="Audio file"),
model: str = Input(
default="large-v2",
choices=["large", "large-v2"],
description="Choose a Whisper model.",
),
transcription: str = Input(
choices=["plain text", "srt", "vtt"],
default="plain text",
description="Choose the format for the transcription",
),
translate: bool = Input(
default=False,
description="Translate the text to English when set to True",
),
language: str = Input(
choices=sorted(LANGUAGES.keys())
+ sorted([k.title() for k in TO_LANGUAGE_CODE.keys()]),
default=None,
description="language spoken in the audio, specify None to perform language detection",
),
temperature: float = Input(
default=0,
description="temperature to use for sampling",
),
patience: float = Input(
default=None,
description="optional patience value to use in beam decoding, as in https://arxiv.org/abs/2204.05424, the default (1.0) is equivalent to conventional beam search",
),
suppress_tokens: str = Input(
default="-1",
description="comma-separated list of token ids to suppress during sampling; '-1' will suppress most special characters except common punctuations",
),
initial_prompt: str = Input(
default=None,
description="optional text to provide as a prompt for the first window.",
),
condition_on_previous_text: bool = Input(
default=True,
description="if True, provide the previous output of the model as a prompt for the next window; disabling may make the text inconsistent across windows, but the model becomes less prone to getting stuck in a failure loop",
),
temperature_increment_on_fallback: float = Input(
default=0.2,
description="temperature to increase when falling back when the decoding fails to meet either of the thresholds below",
),
compression_ratio_threshold: float = Input(
default=2.4,
description="if the gzip compression ratio is higher than this value, treat the decoding as failed",
),
logprob_threshold: float = Input(
default=-1.0,
description="if the average log probability is lower than this value, treat the decoding as failed",
),
no_speech_threshold: float = Input(
default=0.6,
description="if the probability of the <|nospeech|> token is higher than this value AND the decoding has failed due to `logprob_threshold`, consider the segment as silence",
)
) -> ModelOutput:
"""Transcribes and optionally translates a single audio file"""
print(f"Transcribe with {model} model")
model = self.model
if temperature_increment_on_fallback is not None:
temperature = tuple(
np.arange(temperature, 1.0 + 1e-6, temperature_increment_on_fallback)
)
else:
temperature = [temperature]
args = {
"language": language,
"patience": patience,
"suppress_tokens": suppress_tokens,
"initial_prompt": initial_prompt,
"condition_on_previous_text": condition_on_previous_text,
"compression_ratio_threshold": compression_ratio_threshold,
"logprob_threshold": logprob_threshold,
"no_speech_threshold": no_speech_threshold,
"fp16": True,
"verbose": False
}
with torch.inference_mode():
result = model.transcribe(str(audio), temperature=temperature, **args)
if transcription == "plain text":
transcription = result["text"]
elif transcription == "srt":
transcription = write_srt(result["segments"])
else:
transcription = write_vtt(result["segments"])
if translate:
translation = model.transcribe(
str(audio), task="translate", temperature=temperature, **args
)
return ModelOutput(
segments=result["segments"],
detected_language=LANGUAGES[result["language"]],
transcription=transcription,
translation=translation["text"] if translate else None,
)
def write_vtt(transcript):
result = ""
for segment in transcript:
result += f"{format_timestamp(segment['start'])} --> {format_timestamp(segment['end'])}\n"
result += f"{segment['text'].strip().replace('-->', '->')}\n"
result += "\n"
return result
def write_srt(transcript):
result = ""
for i, segment in enumerate(transcript, start=1):
result += f"{i}\n"
result += f"{format_timestamp(segment['start'], always_include_hours=True, decimal_marker=',')} --> "
result += f"{format_timestamp(segment['end'], always_include_hours=True, decimal_marker=',')}\n"
result += f"{segment['text'].strip().replace('-->', '->')}\n"
result += "\n"
return result