-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathplanning_utils.py
137 lines (124 loc) · 4.39 KB
/
planning_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
from enum import Enum
from queue import PriorityQueue
import numpy as np
class Action(Enum):
"""
An action is represented by a 3 element tuple.
The first 2 values are the delta of the action relative to the current grid position. The third and final value
is the cost of performing the action.
"""
WEST = (0, -1, 1)
EAST = (0, 1, 1)
NORTH = (-1, 0, 1)
SOUTH = (1, 0, 1)
NORTH_EAST = (-1, 1, np.sqrt(2))
NORTH_WEST = (-1, -1, np.sqrt(2))
SOUTH_WEST = (1, -1, np.sqrt(2))
SOUTH_EAST = (1, 1, np.sqrt(2))
def __str__(self):
if self == self.WEST: return '<'
elif self == self.EAST: return '>'
elif self == self.NORTH: return '^'
elif self == self.SOUTH: return 'v'
elif self == self.NORTH_EAST: return '^>'
elif self == self.NORTH_WEST: return '^<'
elif self == self.SOUTH_WEST: return 'v<'
elif self == self.SOUTH_EAST: return 'v>'
@property
def cost(self):
return self.value[2]
@property
def delta(self):
return (self.value[0], self.value[1])
def valid_actions(grid, current_node):
"""
Returns a list of valid actions given a grid and current node.
"""
valid = list(Action)
n, m = grid.shape[0] - 1, grid.shape[1] - 1
x, y = current_node
# check if the node is off the grid or
# it's an obstacle
if x - 1 < 0 or grid[int(x-1), int(y)] == 1:
valid.remove(Action.NORTH)
if x + 1 > n or grid[int(x+1), int(y)] == 1:
valid.remove(Action.SOUTH)
if y - 1 < 0 or grid[int(x), int(y-1)] == 1:
valid.remove(Action.WEST)
if y + 1 > m or grid[int(x), int(y+1)] == 1:
valid.remove(Action.EAST)
if ((x-1) < 0 and (y+1) > m) or grid[int(x-1), int(y+1)] == 1:
valid.remove(Action.NORTH_EAST)
if ((x-1) < 0 and (y-1) < 0) or grid[int(x-1),int(y-1)] == 1:
valid.remove(Action.NORTH_WEST)
if ((x+1) > n and (y-1) < 0) or grid[int(x+1), int(y-1)] == 1:
valid.remove(Action.SOUTH_WEST)
if ((x+1) > n and (y+1) > m) or grid[int(x+1), int(y+1)] == 1:
valid.remove(Action.SOUTH_EAST)
return valid
def visualize_path(grid, path, start):
sgrid = np.zeros(np.shape(grid), dtype=np.str)
sgrid[:] = ' '
sgrid[grid[:] == 1] = 'O'
pos = start
for a in path:
da = a.value
sgrid[pos[0], pos[1]] = str(a)
pos = (pos[0] + da[0], pos[1] + da[1])
sgrid[pos[0], pos[1]] = 'G'
sgrid[start[0], start[1]] = 'S'
return sgrid
def heuristic(position, goal_position):
h = np.linalg.norm(np.array(goal_position) - np.array(position))
return h
def a_star(grid, start, goal, h=heuristic):
path = []
path_cost = 0
queue = PriorityQueue()
queue.put((0, start))
visited = set(start)
branch = {}
found = False
while not queue.empty():
item = queue.get()
current_node = item[1]
if current_node == start:
current_cost = 0.0
else:
current_cost = branch[current_node][0]
if current_node == goal:
print('Found a path.')
found = True
break
else:
for action in valid_actions(grid, current_node):
# get the tuple representation
da = action.delta
next_node = (current_node[0] + da[0], current_node[1] + da[1])
branch_cost = current_cost + action.cost
queue_cost = branch_cost + h(next_node, goal)
if next_node not in visited:
visited.add(next_node)
branch[next_node] = (branch_cost, current_node, action)
queue.put((queue_cost, next_node))
if found:
# retrace steps
n = goal
path_cost = branch[n][0]
path.append(goal)
while branch[n][1] != start:
path.append(branch[n][1])
n = branch[n][1]
path.append(branch[n][1])
else:
print('**********************')
print('Failed to find a path!')
print('**********************')
return path[::-1], path_cost
def actual_path(path, grid_start):
waypoint = grid_start
waypoints = []
for action in path:
waypoint = (waypoint[0] + action[0], waypoint[1] + action[1])
waypoints.append(waypoint)
return waypoints