-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathfetch.py
248 lines (205 loc) · 7.5 KB
/
fetch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
from nltk import tokenize
from operator import itemgetter
import math
from nltk.corpus import stopwords
import mysql.connector
import string
import pandas as pd
import tensorflow as tf
import numpy as np
import transformers
import sys
import collections
from MedicalKG_.MedicalKBQA.answer_search import AnswerSearcher
from MedicalKG_.MedicalKBQA.question_classifier import QuestionClassifier
from MedicalKG_.MedicalKBQA.question_parser import QuestionPaser
mydb = mysql.connector.connect(
host="localhost",
port = "3306",
user="root",
password="0000",
database="questiontags"
)
##Global Var
mycursor = mydb.cursor()
stop_words = set(stopwords.words('english'))
np.set_printoptions(threshold=sys.maxsize)
df = pd.read_csv("icliniqQAs.csv")
model = tf.keras.models.load_model('bert_(bilstm-bigru)_sim_model.h5')
model.summary()
batch_size = 1
max_length = 128 # Maximum length of input sentence to the model.
labels = ["contradiction", "entailment", "neutral"]
#######################################################################
class BertSemanticDataGenerator(tf.keras.utils.Sequence):
def __init__(
self,
sentence_pairs,
labels,
batch_size=batch_size,
shuffle=True,
include_targets=True,
):
self.sentence_pairs = sentence_pairs
self.labels = labels
self.shuffle = shuffle
self.batch_size = batch_size
self.include_targets = include_targets
# Load our BERT Tokenizer to encode the text.
# We will use base-base-uncased pretrained model.
self.tokenizer = transformers.BertTokenizer.from_pretrained(
"bert-base-uncased", do_lower_case=True
)
self.indexes = np.arange(len(self.sentence_pairs))
self.on_epoch_end()
def __len__(self):
# Denotes the number of batches per epoch.
return len(self.sentence_pairs) // self.batch_size
def __getitem__(self, idx):
# Retrieves the batch of index.
indexes = self.indexes[idx * self.batch_size : (idx + 1) * self.batch_size]
sentence_pairs = self.sentence_pairs[indexes]
# With BERT tokenizer's batch_encode_plus batch of both the sentences are
# encoded together and separated by [SEP] token.
encoded = self.tokenizer.batch_encode_plus(
sentence_pairs.tolist(),
add_special_tokens=True,
max_length=max_length,
return_attention_mask=True,
return_token_type_ids=True,
pad_to_max_length=True,
return_tensors="tf",
)
# Convert batch of encoded features to numpy array.
input_ids = np.array(encoded["input_ids"], dtype="int32")
attention_masks = np.array(encoded["attention_mask"], dtype="int32")
token_type_ids = np.array(encoded["token_type_ids"], dtype="int32")
# Set to true if data generator is used for training/validation.
if self.include_targets:
labels = np.array(self.labels[indexes], dtype="int32")
return [input_ids, attention_masks, token_type_ids], labels
else:
return [input_ids, attention_masks, token_type_ids]
def on_epoch_end(self):
# Shuffle indexes after each epoch if shuffle is set to True.
if self.shuffle:
np.random.RandomState(42).shuffle(self.indexes)
class KG:
def __init__(self):
self.classifier = QuestionClassifier()
self.parser = QuestionPaser()
self.searcher = AnswerSearcher()
def KGanswer(self, sent):
answer = False
res_classify = self.classifier.classify(sent)
print(res_classify)
if not res_classify:
return answer
res_sql = self.parser.parser_main(res_classify)
print(res_sql)
final_answers = self.searcher.search_main(res_sql)
print(final_answers)
if not final_answers:
return answer
else:
return '\n'.join(final_answers)
def check_similarity(sentence1, sentence2):
sentence_pairs = np.array([[str(sentence1), str(sentence2)]])
test_data = BertSemanticDataGenerator(
sentence_pairs, labels=None, batch_size=1, shuffle=False, include_targets=False,
)
proba = model.predict(test_data)[0]
idx = np.argmax(proba)
proba = f"{proba[idx]: .2f}%"
pred = labels[idx]
return pred, proba
def tagsanswer(question):
question = question.lower()
question = question.translate(str.maketrans('', '', string.punctuation))
total_words = question.split()
total_word_length = len(total_words)
# print(total_word_length)
total_sentences = tokenize.sent_tokenize(question)
total_sent_len = len(total_sentences)
tf_score = {}
for each_word in total_words:
each_word = each_word.replace('.', '')
if each_word not in stop_words:
if each_word in tf_score:
tf_score[each_word] += 1
else:
tf_score[each_word] = 1
tf_score.update((x, y / int(total_word_length)) for x, y in tf_score.items())
# print(tf_score)
def check_sent(word, sentences):
final = [all([w in x for w in word]) for x in sentences]
sent_len = [sentences[i] for i in range(0, len(final)) if final[i]]
return int(len(sent_len))
idf_score = {}
for each_word in total_words:
each_word = each_word.replace('.', '')
if each_word not in stop_words:
if each_word in idf_score:
idf_score[each_word] = check_sent(each_word, total_sentences)
else:
idf_score[each_word] = 1
# Performing a log and divide
idf_score.update((x, math.log(int(total_sent_len) / y)) for x, y in idf_score.items())
# print(idf_score)
tf_idf_score = {key: tf_score[key] * idf_score.get(key, 0) for key in tf_score.keys()}
# print(tf_idf_score)
def get_top_n(dict_elem, n):
result = dict(sorted(dict_elem.items(), key=itemgetter(1), reverse=True)[:n])
return result
res = get_top_n(tf_idf_score, 100)
tags = list(res.keys())[:]
query = "SELECT id FROM questiontags.tags where id > 466 and (tag = "
for x in tags:
query = query + "'" + x + "'" + " or tag = "
query = query[:len(query) - 10]
# print(query)
query += ')'
mycursor.execute(query)
myresult = mycursor.fetchall()
Output = collections.defaultdict(int)
for elem in myresult:
Output[elem[0]] += 1
# Printing output
a = sorted(Output.items(), key=lambda x: x[1], reverse=True)[:3]
print(a)
res = []
for x in a:
q2 = df['question']
q2 = q2[x[0] - 1]
xx = check_similarity(question, q2)
if (xx[0] != 'contradiction'):
res.append(xx[1])
index = res.index(max(res))
index = a[index]
# print(index[0])
Ans = df["answer"]
answer = Ans[index[0] - 1]
return answer, index[0] - 1
def accuracy():
counter_max = 0
#kng = KG()
for num, question in enumerate(df['question'][:10]):
#answer = kng.KGanswer(question)
# pred, prob = check_similarity(question, answer)
# print(pred, " ", prob)
# if (pred == "contradiction"):
# answer, index = tagsanswer(question)
print(question)
#if answer == False:
answer, index = tagsanswer(question)
print (index)
if index == num:
counter_max += 1
#else:
#print(question, answer)
#counter_max += 1
return counter_max
def main():
print(accuracy())
if __name__ == '__main__':
main()