-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathidentify.py
53 lines (46 loc) · 1.49 KB
/
identify.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import numpy as np
import cv2
import pickle
# This File was just to test the the recognizer
#Face cascade used for face detector
face_cascade = cv2.CascadeClassifier('cascades/data/haarcascade_frontalface_alt2.xml')
#This is to used for Face Recognizer
recognizer = cv2.face.LBPHFaceRecognizer_create()
#this reads the recognizer model
recognizer.read("trainner.yml")
#this creates a dictionary
labels = {"person_name":1}
#We deserialize the to the labels
with open("labels.pickle","rb") as f:
og_labels = pickle.load(f)
labels = {v:k for k,v in og_labels.items()}
cap=cv2.VideoCapture(0)
while(True):
ret, frame=cap.read()
gray =cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
faces =face_cascade.detectMultiScale(gray, scaleFactor= 1.5,minNeighbors= 5)
for (x, y, w, h) in faces:
#print (x,y,w,h)
roi_gray = gray[y:y+h,x:x+w] #(cord1-height, cord2-height)
roi_color = gray[y:y+h,x:x+w]
id_,conf =recognizer.predict(roi_gray)
if conf>=0 and conf<=40:
#print(id_)
#print (labels[id_])
font = cv2.FONT_HERSHEY_SIMPLEX
name = labels[id_]+" "+ str(int(100-conf))+"%"
color = (255 ,255,255)
stroke =2
cv2.putText(frame,name ,(x,y),font,1,color,stroke,cv2.LINE_AA)
#img_item=name+".png"
#cv2.imwrite(img_item,roi_gray)
color = (255 ,0, 0)
stroke=2
end_cord_x= x+w
end_cord_y= y+h
cv2.rectangle(frame, (x,y), (end_cord_x,end_cord_y),color ,stroke)
cv2.imshow('frame',frame)
if cv2.waitKey(20) & 0xFF ==ord('q'):
break
cap.release()
cv2.destroyAllWindows()