Skip to content
@Agri-Hub

Agri-Hub

AI and Earth Observation for Sustainable Land Ecosystems research group

AgriHUB: AI and Earth Observation for Sustainable Land Ecosystems

News

What we do

AgriHUB is a research group within the Beyond Center of Earth Observation Research of the National Observatory of Athens, collaborating with the Image Processing Laboratory of the University of Valencia. We conduct research in the domain of Big Earth data and Artificial Intelligence trying to understand agro-ecosystems and develop applications that support sustainable and resilient agriculture. Over the last five years, our team has participated in more than ten EU-funded projects providing agricultural information services that utilize satellite data, drone images, street-level images, geotagged photos from the field and numerical weather predictions to address real-world problems in the thematic areas of i) impacts of climate change on ecosystem services and biodiversity, ii) food security, iii) climate-smart farming, iv) monitoring of land policies.

Through this work, AgriHUB has developed the following novel applications: agrowth (phenology and yield predictions), resagri (weather peril earth warning system), optimal sowing recommendation system (with Corteva) and DataCAP (policy monitoring system). These applications are product of systematic research that has culminated to several scientific publications: crop classification using satellite data and machine learning [1], semi-supervised and unsupervised phenology predictions for real-world scenarios [2], explainable predictions of the onset of pest harmfulness in cotton [3], fusion of satellite and street-level images for enhanced agricultural monitoring [4], agriculture monitoring data cubes and distributed AI pipelines in HPC to handle the massive amounts of satellite data [5], land suitability for applying specific management practices using causal machine learning and assessment of the impact of digital agriculture tools using causal inference [6].

Projects

Our team has participated in multiple European projects:

  1. RECAP
  2. EOPEN
  3. ENVISION
  4. e-shape
  5. Callisto
  6. Eiffel
  7. Transition
  8. Microservices
  9. Excelsior

Thematic Areas


  • Monitoring of agricultural policies (e.g., Common Agricultural Policy of the EU)
  • Food Security
  • Ecosystem Services and Climate Change
  • Smart and resilient farming

Research Areas


  • Climate Change and Ecosystem Services
    • Understanding the drivers of Earth system change
    • Future trajectories of ecosystem services
  • Agriculture Modeling
    • Blending networks and process-based models
    • Blending Earth observations and meteorological data
  • Information Extraction from Remote Sensing Images
    • Computer vision on images from heterogeneous sources
    • Big Earth data technologies and distributed learning

The Team

  • Dr. Dimitrios Barmpoudakis
  • Iason Tsardanidis
  • Ilias Tsoumas
  • Thanassis Drivas
  • Dr. Fotios Balampanis

Active internal (Beyond Research Center) collaborators

  • Dr. Nikolaos S. Bartsotas
  • George Choumos
  • Nikolaos Kintis

Active external collaborators

Publications

Satellite Image Time-series Classification/Segmentation

Sitokonstantinou, V., Papoutsis, I., Kontoes, C., Lafarga Arnal, A., Armesto Andres, A. P., and Garraza Zurbano, J. A. (2018). Scalable parcel-based crop identification scheme using Sentinel-2 data time-series for the monitoring of the common agricultural policy. Remote Sensing, 10(6), 911. Paper 

Rousi, M., Sitokonstantinou, V., Meditskos, G., Papoutsis, I., Gialampoukidis, I., Koukos, A., ... and Kompatsiaris, I. (2020). Semantically enriched crop type classification and linked earth observation data to support the common agricultural policy monitoring. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 529-552. Paper 

Jo, HW., Koukos, A., Sitokonstantinou V., Lee, WK. & Kontoes, C. (2022). Towards Global Crop Maps with Transfer Learning. In NeurIPS Workshop Climate Change AI. Paper 

Jo, H. W., Park, E., Sitokonstantinou, V., Kim, J., Lee, S., Koukos, A., & Lee, W. K. (2023). Recurrent U-Net based dynamic paddy rice mapping in South Korea with enhanced data compatibility to support agricultural decision making. GIScience & Remote Sensing, 60(1). Paper 

Fusion of Multiple Remote Sensing Sources

Tsardanidis, I., Koukos, A., Sitokonstantinou, V., Drivas, T., & Kontoes, C. (2024). Cloud gap-filling with deep learning for improved grassland monitoring. arXiv preprint arXiv:2403.09554. Paper 

Choumos, G., Koukos, A., Sitokonstantinou, V. and Kontoes, C. (2022). Towards space-to-ground data availability for the monitoring of the common agricultural policy. In 2022 IEEE 14th Image, Video, and Multidimensional Signal Processing Workshop, IVMSP. Paper 

Ioannidou, M., Koukos, A., Sitokonstantinou, V., Papoutsis, I. and Kontoes, C., 2022. Assessing the added value of Sentinel-1 PolSAR data for crop classification. Remote Sensing. Paper 

Sitokonstantinou, V., Koukos, A., Drivas, T., Kontoes, C., Papoutsis, I., and Karathanassi, V. (2021). A Scalable Machine Learning Pipeline for Paddy Rice Classification Using Multi-Temporal Sentinel Data. Remote Sensing, 13(9), 1769. Paper 

Explainable Digital Agriculture

Nanushi, O., Sitokonstantinou, V., Tsoumas, I. and Kontoes, C. (2022). Pest presence prediction using interpretable machine learning. In 2022 IEEE 14th Image, Video, and Multidimensional Signal Processing Workshop, IVMSP. Paper 

Big Earth Data Technologies

Drivas, T., Sitokonstantinou. V., Tsardanidis, I., Koukos, A., Karathanassi, V. and Kontoes, C. (2022). A Data Cube of Big Satellite Image Time-Series for Agriculture Monitoring. In 2022 IEEE 14th Image, Video, and Multidimensional Signal Processing Workshop, IVMSP. Paper 

Sitokonstantinou, V., Koukos, A., Drivas, T., Kontoes, C., and Karathanassi, V. (2022). DataCAP: A Satellite Datacube and Crowdsourced Street-Level Images for the Monitoring of the Common Agricultural Policy. In International Conference on Multimedia Modeling (pp. 473-478). Springer. Paper 

Sitokonstantinou, V., Drivas, T., Koukos, A., Papoutsis, I., Kontoes, C. and Karathanassi, V. (2020). Scalable distributed random forest classification for paddy rice mapping. In Proceedings of the Asian Remote Sensing Conference (ACRS 2019) (pp. 836-845). Paper 

Crop Growth Modeling

Sitokonstantinou, V., Koukos, A., Tsoumas, I., Bartsotas, N. S., Kontoes, C., & Karathanassi, V. (2023). Fuzzy clustering for the within-season estimation of cotton phenology. Plos one, 18(3), e0282364. Paper 

Sitokonstantinou, V., Koukos, A., Kontoes, C., Bartsotas, N. S., and Karathanassi, V. (2021, July). Semi-Supervised Phenology Estimation in Cotton Parcels with Sentinel-2 Time-Series. In 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS (pp. 8491-8494). IEEE. Paper 

Sitokonstantinou, V., Koutroumpas, A., Drivas, T., Koukos, A., Karathanassi, V., Kontoes, H., and Papoutsis, I. (2020). A Sentinel based agriculture monitoring scheme for the control of the CAP and food security. In Eighth International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2020) (Vol. 11524, pp. 48-59). SPIE Paper 

Causal Inference for Sustainable Agriculture

Giannarakis, G., Sitokonstantinou, V., Roxanne, L. and Kontoes, C. (2022). Towards assessing agricultural land suitability using causal machine learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Paper 

Giannarakis, G., Sitokonstantinou V., Lorilla, R.S. & Kontoes, C. (2022). Personalizing Sustainable Agriculture with Causal Machine Learning. In NeurIPS Workshop Climate Change AI. Paper 

Tsoumas, I., Giannarakis, G., Sitokonstantinou V., Koukos, A., Loka, D., Bartsotas, N., Kontoes, C. & Athanasiadis, I. (2022). Evaluating Digital Tools for Sustainable Agriculture using Causal Inference. In NeurIPS Workshop Climate Change AI. Paper 

Tsoumas, I., Giannarakis, G., Sitokonstantinou V., Koukos, A., Loka, D., Bartsotas, N., Kontoes, C. & Athanasiadis, I. (2022). Evaluating Digital Agriculture Recommendations with Causal Inference. In Thirty-Seventh AAAI conference on artificial intelligence. paper


Alumni

  • Dr. Roxanne S. Lorilla

Pinned Loading

  1. Callisto-Dataset-Collection Callisto-Dataset-Collection Public

    A list of datasets aiming to enable Artificial Intelligence applications that use Copernicus data.

    165 22

Repositories

Showing 10 of 17 repositories
  • eoProcessors Public
    Agri-Hub/eoProcessors’s past year of commit activity
    Python 0 AGPL-3.0 1 12 (1 issue needs help) 1 Updated Jan 1, 2025
  • agri-hub.github.io Public

    Agri-Hub ressearch group

    Agri-Hub/agri-hub.github.io’s past year of commit activity
    Ruby 0 AGPL-3.0 0 0 0 Updated Sep 24, 2024
  • .github Public

    Research group: AI and Earth observation for sustainable ecosystems

    Agri-Hub/.github’s past year of commit activity
    0 0 0 0 Updated Aug 16, 2024
  • igarss2024 Public

    Summer School

    Agri-Hub/igarss2024’s past year of commit activity
    Jupyter Notebook 4 2 0 0 Updated Jul 6, 2024
  • Deep-Learning-for-Cloud-Gap-Filling-on-Normalized-Difference-Vegetation-Index Public

    A CNN-RNN based model that identifies correlations between optical and SAR data and exports dense Normalized Difference Vegetation Index (NDVI) time-series of a static 6-day time resolution and can be used for Events Detection tasks

    Agri-Hub/Deep-Learning-for-Cloud-Gap-Filling-on-Normalized-Difference-Vegetation-Index’s past year of commit activity
    Jupyter Notebook 40 MIT 9 0 0 Updated Jun 14, 2024
  • Callisto Public

    A Callisto repository that will hold relevant jupyter notebooks and other related work

    Agri-Hub/Callisto’s past year of commit activity
    Jupyter Notebook 8 1 0 1 Updated Dec 13, 2023
  • Callisto-Dataset-Collection Public

    A list of datasets aiming to enable Artificial Intelligence applications that use Copernicus data.

    Agri-Hub/Callisto-Dataset-Collection’s past year of commit activity
    165 Apache-2.0 22 1 0 Updated Nov 21, 2023
  • AAAI23-Eval-AgriRecommendations Public

    "Evaluating Digital Agriculture Recommendations with Causal Inference". It was accepted and presented in the special track on Artificial Intelligence for Social Impact, AAAI-23

    Agri-Hub/AAAI23-Eval-AgriRecommendations’s past year of commit activity
    Jupyter Notebook 6 MIT 2 0 0 Updated Sep 28, 2023
  • Agri-Hub/cotton-phenology-dataset’s past year of commit activity
    Jupyter Notebook 13 7 0 0 Updated Mar 9, 2023
  • CCAI-NeurIPS22-Personalizing Public

    "Personalizing Sustainable Agriculture with Causal Machine Learning". Best Proposal Paper of "Tackling Climate Change with Machine Learning" Workshop, NeurIPS'22.

    Agri-Hub/CCAI-NeurIPS22-Personalizing’s past year of commit activity
    Jupyter Notebook 1 GPL-3.0 0 0 0 Updated Feb 2, 2023