Skip to content

Code for MICCAI 2023 publication: SCOL: Supervised Contrastive Ordinal Loss for Abdominal Aortic Calcification Scoring on Vertebral Fracture Assessment Scans

Notifications You must be signed in to change notification settings

AfsahS/Supervised-Contrastive-Ordinal-Loss-for-Ordinal-Regression

Repository files navigation

Supervised-Contrastive-Ordinal-Loss

Abstract: Abdominal Aortic Calcification (AAC) is a known marker of asymptomatic Atherosclerotic Cardiovascular Diseases (ASCVDs). AAC can be observed on Vertebral Fracture Assessment (VFA) scans acquired using Dual-Energy X-ray Absorptiometry (DXA) machines. Thus, the automatic quantification of AAC on VFA DXA scans may be used to screen for CVD risks, allowing early interventions. In this research, we formulate the quantification of AAC as an ordinal regression problem. We propose a novel Supervised Contrastive Ordinal Loss (SCOL) by incorporating a label-dependent distance metric with existing supervised contrastive loss to leverage the ordinal information inherent in discrete AAC regression labels. Furthermore, we develop a Dual-encoder Contrastive Ordinal Learning (DCOL) framework that learns the contrastive ordinal representation at global and local levels to improve the feature separability and class diversity in latent space among the AAC genera. We evaluate the performance of the proposed framework using two clinical VFA DXA scan datasets and compare our work with state-of-the-art methods. Furthermore, for predicted AAC scores, we provide a clinical analysis to predict the future risk of a Major Acute Cardiovascular Event (MACE). Our results demonstrate that this learning enhances inter-class separability and strengthens intra-class consistency among the AAC-24 genera, which results in predicting the high-risk AAC classes with high sensitivity and high accuracy.

Code for MICCAI 2023 publication: SCOL: Supervised Contrastive Ordinal Loss for Abdominal Aortic Calcification Scoring on Vertebral Fracture Assessment Scans

framework

SCOL_loss

table1

table 2

table3

Confusion matrix for Table 1 comp_CM

Confusion matrix for Table 2 CM_baseline

Confusion Matrix for Table 3 CM_SOTA

About

Code for MICCAI 2023 publication: SCOL: Supervised Contrastive Ordinal Loss for Abdominal Aortic Calcification Scoring on Vertebral Fracture Assessment Scans

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages