Code of Counterfactual Experience Augmented Off-policy Reinforcement Learning.
The code files have not been fully organized and are only for temporary reference. A clearer structure and instructions will be updated later.
Counterfactual experience augmentation method refers to utils/CEA.py
.
The maximum entropy sampling method can be referenced in a separate repository: https://github.com/Aegis1863/HdGkde
python 3.8, torch, numpy, pandas, seaborn, tqdm, gymnasium, scikit-learn
Continuous control:
python .\DDPG.py -w 1 --sta --per -t pendulum
python .\DDPG.py -w 1 --sta --per -t lunar
Discrete Control:
python .\RDQN.py -w 1 --sta --sta_kind regular -t sumo
python .\RDQN.py -w 1 --sta --sta_kind regular -t highway
- terminal parameters:
- -w: 1 for save data, 0 for test and do not save data;
- -t task: pendulum, lunar; sumo highway;
Then data will be in data\plot_data\{task}\{model_name}\{...}.csv
.
Parameter | Value | Description |
---|---|---|
gamma | 0.99 | Discount factor for future |
alpha | 0.2 | Determines how much prioritization is used |
beta | 0.6 | Determines how much importance sampling is used |
prior_eps | 1e-6 | Guarantees every transition can be sampled |
v_min | 0 | Min value of support |
v_max | 200 | Max value of support |
atom_size | 51 | The unit number of support |
memory_size | 20000 | Size of the replay buffer |
batch_size | 128 | Batch size for updates |
target_update | 100 | Period for target model's hard update |
Parameter | Value | Description |
---|---|---|
actor_lr | 5e-4 | Learning rate for the actor network |
critic_lr | 5e-3 | Learning rate for the critic network |
alpha_lr | 1e-3 | Learning rate for the temperature parameter |
hidden_dim | 128 | Dimension of hidden layers |
gamma | 0.98 | Discount factor for future rewards |
tau | 0.005 | Soft update parameter |
buffer_size | 20000 | Size of the replay buffer |
target_entropy | 1.36 | Target entropy for the policy |
model_alpha | 0.01 | Weighting factor in the model loss function |
total_epochs | 1 | Total number of training epochs |
minimal_size | 500 | Minimum size of the replay buffer before updating |
batch_size | 64 | Batch size for updates |
Parameter | Value | Description |
---|---|---|
memory_size | 20000 | Size of the replay buffer |
batch_size | 128 | Batch size for updates |
target_update | 100 | Period for target model's hard update |
threshold_ratio | 0.1 | Threshold ratio for choosing CTP |
Parameter | Value | Description |
---|---|---|
actor_lr | 3e-4 | Learning rate for the actor network |
critic_lr | 3e-4 | Learning rate for the critic network |
gamma | 0.99 | Discount factor for future rewards |
total_epochs | 1 | Number of training iterations |
total_episodes | 100 | Number of simulation played per-training iteration |
eps | 0.2 | Clipping range parameter for the PPO objective (1 - eps to 1 + eps) |
epochs | 10 | Number of epochs per training sequence in PPO |
Parameter | Value | Description |
---|---|---|
real_ratio | 0.5 | Ratio of real and model-generated data |
actor_lr | 5e-4 | Learning rate for the actor network |
critic_lr | 5e-3 | Learning rate for the critic network |
alpha_lr | 1e-3 | Learning rate for the temperature parameter |
hidden_dim | 128 | Dimension of hidden layers |
gamma | 0.98 | Discount factor for future rewards |
tau | 0.005 | Soft update parameter |
buffer_size | 20000 | Size of the replay buffer |
target_entropy | 1.36 | Target entropy for the policy |
model_alpha | 0.01 | Weighting factor in the model loss function |
rollout_batch_size | 1000 | Batch size for rollouts |
rollout_length | 1 | Length of the model rollouts |
Parameter | Value | Description |
---|---|---|
actor_lr | 2e-4 | Learning rate of actor network |
critic_lr | 2e-4 | Learning rate of critic network |
hidden_dim | 128 | Dimension of hidden layers |
buffer_size | 5e4 | Size of replay buffer |
minimal_size | 5e3 | Minimum sample size |
gamma | 0.98 | Discount factor |
sigma | 0.01 | Standard deviation of Gaussian noise |
tau | 0.005 | Soft update parameter |
batch_size | 128 | Batch size for training |