-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
52 lines (34 loc) · 1.37 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score
def load_and_preprocess_data():
import pandas as pd
# Load dataset
data = pd.read_csv('./data/titanic.csv')
# Handle missing values
data['Age'] = data['Age'].fillna(data['Age'].median())
data['Embarked'] = data['Embarked'].fillna(data['Embarked'].mode()[0])
# One-hot encode categorical variables
data = pd.get_dummies(data, columns=['Sex', 'Embarked'], drop_first=True)
# Drop unnecessary columns
data = data.drop(['PassengerId', 'Name', 'Ticket', 'Cabin'], axis=1)
return data
def train_model(data):
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
# Split features and target
X = data.drop('Survived', axis=1)
y = data['Survived']
# Train-test split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Train model
model = LogisticRegression(max_iter=500)
model.fit(X_train, y_train)
# Calculate accuracy
accuracy = model.score(X_test, y_test)
print(f"Model Accuracy: {accuracy * 100:.2f}%")
return model, accuracy
if __name__ == "__main__":
data = load_and_preprocess_data()
train_model(data)