-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataprep.py
355 lines (299 loc) · 11.7 KB
/
dataprep.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
# import os
# import re
# import spacy
# from langdetect import detect
# from sqlalchemy.orm import Session
# from app.database import SessionLocal, engine
# from app import models
# import logging
# from tqdm import tqdm
# # Ensure the tables are created
# models.Base.metadata.create_all(bind=engine)
# # Set up logging
# logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
# # Load the SpaCy model and set the max length
# nlp = spacy.load("en_core_web_sm")
# nlp.max_length = 1500000 # Increase the max length further
# def preprocess_text(text):
# # Split the text into smaller chunks
# chunk_size = 1000000 # Adjust chunk size as needed
# chunks = [text[i:i + chunk_size] for i in range(0, len(text), chunk_size)]
# cleaned_text = ""
# for chunk in chunks:
# # Use SpaCy to process each chunk
# doc = nlp(chunk)
# tokens = [token.lemma_ for token in doc if not token.is_stop and not token.is_punct]
# cleaned_text += ' '.join(tokens) + ' '
# return cleaned_text.strip()
# def extract_metadata(text):
# # Extract metadata such as author, editor, and language
# author = "Unknown"
# editor = None
# language = "Unknown"
# author_match = re.search(r'Author:\s*(.*)', text)
# if author_match:
# author = author_match.group(1).strip()
# editor_match = re.search(r'Editor:\s*(.*)', text)
# if editor_match:
# editor = editor_match.group(1).strip()
# try:
# language = detect(text)
# except:
# language = "Unknown"
# return author, editor, language
# def process_txts(txt_dir):
# books = []
# txt_files = [f for f in os.listdir(txt_dir) if f.endswith(".txt")]
# for txt_filename in tqdm(txt_files, desc="Processing text files"):
# txt_path = os.path.join(txt_dir, txt_filename)
# with open(txt_path, 'r', encoding='utf-8') as file:
# text = file.read()
# cleaned_text = preprocess_text(text)
# author, editor, language = extract_metadata(text)
# books.append({
# "title": txt_filename.replace(".txt", ""),
# "author": author,
# "editor": editor,
# "publisher": "Unknown", # Set default or extract from text if available
# "description": "No description available", # Set default or extract from text if available
# "language": language,
# "text": cleaned_text,
# "pages": [] # Placeholder for pages
# })
# logging.info(f"Processed file: {txt_filename}")
# return books
# def save_books_to_db(books):
# db: Session = SessionLocal()
# for book in tqdm(books, desc="Saving books to database"):
# db_book = models.Book(
# title=book["title"],
# author=book["author"],
# editor=book["editor"],
# publisher=book["publisher"],
# description=book["description"],
# language=book["language"],
# text=book["text"]
# )
# db.add(db_book)
# db.commit()
# db.refresh(db_book)
# for page in book["pages"]:
# db_page = models.BookPage(
# page_number=page["page_number"],
# content=page["content"],
# image_url=page["image_url"],
# book_id=db_book.id
# )
# db.add(db_page)
# db.commit()
# logging.info(f"Inserted book into database: {book['title']}")
# db.close()
# # Example usage
# if __name__ == "__main__":
# txt_dir = "bookpdf"
# logging.info("Starting the text processing...")
# books = process_txts(txt_dir)
# logging.info("Finished processing text files. Now saving to database...")
# save_books_to_db(books)
# logging.info("All books have been saved to the database.")
# import os
# import re
# import spacy
# from langdetect import detect
# from sqlalchemy.orm import Session
# from app.database import SessionLocal, engine
# from app import models
# import logging
# from tqdm import tqdm
# # Ensure the tables are created
# models.Base.metadata.create_all(bind=engine)
# # Set up logging
# logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
# # Load the SpaCy model and set the max length
# nlp = spacy.load("en_core_web_sm")
# nlp.max_length = 1500000 # Increase the max length further
# def preprocess_text(text):
# # Split the text into smaller chunks
# chunk_size = 1000000 # Adjust chunk size as needed
# chunks = [text[i:i + chunk_size] for i in range(0, len(text), chunk_size)]
# cleaned_text = ""
# for chunk in chunks:
# # Use SpaCy to process each chunk
# doc = nlp(chunk)
# tokens = [token.lemma_ for token in doc if not token.is_stop and not token.is_punct]
# cleaned_text += ' '.join(tokens) + ' '
# return cleaned_text.strip()
# def extract_metadata(text):
# # Extract metadata such as author, editor, and language
# author = "Unknown"
# editor = None
# language = "Unknown"
# author_match = re.search(r'Author:\s*(.*)', text)
# if author_match:
# author = author_match.group(1).strip()
# editor_match = re.search(r'Editor:\s*(.*)', text)
# if editor_match:
# editor = editor_match.group(1).strip()
# try:
# language = detect(text)
# except:
# language = "Unknown"
# return author, editor, language
# def process_txts(txt_dir):
# books = []
# txt_files = [f for f in os.listdir(txt_dir) if f.endswith(".txt")]
# for txt_filename in tqdm(txt_files, desc="Processing text files"):
# txt_path = os.path.join(txt_dir, txt_filename)
# with open(txt_path, 'r', encoding='utf-8') as file:
# text = file.read()
# cleaned_text = preprocess_text(text)
# author, editor, language = extract_metadata(text)
# books.append({
# "title": txt_filename.replace(".txt", ""),
# "author": author,
# "editor": editor,
# "publisher": "Unknown", # Set default or extract from text if available
# "description": "No description available", # Set default or extract from text if available
# "language": language,
# "text": cleaned_text,
# "pages": [] # Placeholder for pages
# })
# logging.info(f"Processed file: {txt_filename}")
# return books
# def save_books_to_db(books):
# db: Session = SessionLocal()
# for book in tqdm(books, desc="Saving books to database"):
# db_book = models.Book(
# title=book["title"],
# author=book["author"],
# editor=book["editor"],
# publisher=book["publisher"],
# description=book["description"],
# language=book["language"],
# text=book["text"]
# )
# db.add(db_book)
# db.commit()
# db.refresh(db_book)
# for page in book["pages"]:
# db_page = models.BookPage(
# page_number=page["page_number"],
# content=page["content"],
# image_url=page["image_url"],
# book_id=db_book.id
# )
# db.add(db_page)
# db.commit()
# logging.info(f"Inserted book into database: {book['title']}")
# db.close()
# # Example usage
# if __name__ == "__main__":
# txt_dir = "bookpdf"
# logging.info("Starting the text processing...")
# books = process_txts(txt_dir)
# logging.info("Finished processing text files. Now saving to database...")
# save_books_to_db(books)
# logging.info("All books have been saved to the database.")
import os
import re
import spacy
from langdetect import detect
from sqlalchemy.orm import Session
from app.database import SessionLocal, engine
from app import models
import logging
from tqdm import tqdm
# Ensure the tables are created
models.Base.metadata.create_all(bind=engine)
# Set up logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(message)s')
# Load the SpaCy model and set the max length
nlp = spacy.load("en_core_web_sm")
nlp.max_length = 1500000 # Increase the max length further
def preprocess_text(text):
# Split the text into smaller chunks
chunk_size = 1000000 # Adjust chunk size as needed
chunks = [text[i:i + chunk_size] for i in range(0, len(text), chunk_size)]
cleaned_text = ""
for chunk in chunks:
# Use SpaCy to process each chunk
doc = nlp(chunk)
tokens = [token.lemma_ for token in doc if not token.is_stop and not token.is_punct]
cleaned_text += ' '.join(tokens) + ' '
return cleaned_text.strip()
def extract_metadata(text):
# Extract metadata such as author, editor, and language
author = "Unknown"
editor = None
language = "Unknown"
author_match = re.search(r'Author:\s*(.*)', text)
if author_match:
author = author_match.group(1).strip()
editor_match = re.search(r'Editor:\s*(.*)', text)
if editor_match:
editor = editor_match.group(1).strip()
try:
language = detect(text)
except:
language = "Unknown"
return author, editor, language
def process_txts(txt_dir):
books = []
txt_files = [f for f in os.listdir(txt_dir) if f.endswith(".txt")]
for txt_filename in tqdm(txt_files, desc="Processing text files"):
txt_path = os.path.join(txt_dir, txt_filename)
with open(txt_path, 'r', encoding='utf-8') as file:
text = file.read()
cleaned_text = preprocess_text(text)
author, editor, language = extract_metadata(text)
books.append({
"title": txt_filename.replace(".txt", ""),
"author": author,
"editor": editor,
"publisher": "Unknown", # Set default or extract from text if available
"description": "No description available", # Set default or extract from text if available
"language": language,
"text": cleaned_text,
"pages": [] # Placeholder for pages
})
logging.info(f"Processed file: {txt_filename}")
return books
def save_books_to_db(books):
db: Session = SessionLocal()
for book in tqdm(books, desc="Saving books to database"):
# Check if the book already exists in the database
existing_book = db.query(models.Book).filter(models.Book.title == book["title"]).first()
if existing_book:
logging.info(f"Book already exists in database, skipping: {book['title']}")
continue
db_book = models.Book(
title=book["title"],
author=book["author"],
editor=book["editor"],
publisher=book["publisher"],
description=book["description"],
language=book["language"],
text=book["text"]
)
db.add(db_book)
db.commit()
db.refresh(db_book)
for page in book["pages"]:
db_page = models.BookPage(
page_number=page["page_number"],
content=page["content"],
image_url=page["image_url"],
book_id=db_book.id
)
db.add(db_page)
db.commit()
logging.info(f"Inserted book into database: {book['title']}")
db.close()
# Example usage
if __name__ == "__main__":
txt_dir = "bookpdf"
logging.info("Starting the text processing...")
books = process_txts(txt_dir)
logging.info("Finished processing text files. Now saving to database...")
save_books_to_db(books)
logging.info("All books have been saved to the database.")