-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathpreprocessing.py
75 lines (58 loc) · 2.92 KB
/
preprocessing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
import numpy as np
import pickle
from numpy.linalg import norm
from skimage.filters import *
from skimage.color import rgb2gray
import matplotlib.pyplot as plt
import cv2 as cv
import os
import time
def binarize(img, method):
if method == 'skimage_local':
return img >= threshold_local(img, 31, offset=3)
if method == 'skimage_sauvola':
return img >= threshold_sauvola(img, 31)
if method == 'cv_adaptive':
return cv.adaptiveThreshold(img,255,cv.ADAPTIVE_THRESH_GAUSSIAN_C,cv.THRESH_BINARY_INV,41,10)
def get_staff_corners(img, contour): #this function doens't work well, it needs a different implementation
image_corners = np.array([[0, 0], [img.shape[1], 0], [0, img.shape[0]], [img.shape[1], img.shape[0]]])
staff_corners = np.zeros((4,2))
staff_corners[0] = max(contour, key=lambda point:norm(point[0] - image_corners[3]))
staff_corners[1] = max(contour, key=lambda point:norm(point[0] - image_corners[2]))
staff_corners[2] = max(contour, key=lambda point:norm(point[0] - image_corners[1]))
staff_corners[3] = max(contour, key=lambda point:norm(point[0] - image_corners[0]))
return staff_corners
def project(img, corners):
wdith = min(norm(corners[0] - corners[1]), norm(corners[2] - corners[3]))
height = max(norm(corners[0] - corners[2]), norm(corners[1] - corners[3]))
src = np.array([[0, 0], [wdith, 0], [0, height], [wdith, height]], np.float32)
corners = corners.astype("float32")
h = cv.getPerspectiveTransform(corners, src)
return cv.warpPerspective(img, h, (int(wdith), int(height)))
def fix_projection(image_binary, image_grayscale):
#adding extra padding
image_binary = np.pad(image_binary, 20, 'constant', constant_values=0)
image_grayscale = np.pad(image_grayscale, 20, 'constant', constant_values=0)
img = cv.dilate(image_binary, cv.getStructuringElement(cv.MORPH_ELLIPSE,(20,20)))
contours, _ = cv.findContours(img, cv.RETR_LIST, cv.CHAIN_APPROX_SIMPLE);
largest_contour = max(contours, key = cv.contourArea)#key = lambda cnt : cv.arcLength(cnt, False))
hull = cv.convexHull(largest_contour);
staff_corners = get_staff_corners(img, hull)
# ----plotting----
fig, ax = plt.subplots()
ax.imshow(img, cmap=plt.cm.gray)
ax.plot(largest_contour[:, :, 0], largest_contour[:, :, 1], linewidth=2, c='g')
#for cnt in contours:
# ax.plot(cnt[:, :, 0], cnt[:, :, 1], linewidth=1, c='g')
ax.plot(hull[:, :, 0], hull[:, :, 1], linewidth=1, c="b")
ax.scatter(staff_corners[:, 0], staff_corners[:, 1], linewidth=1, c="r")
# ----------------
img = project(image_grayscale, staff_corners);
img = unsharp_mask(img) #sharpening the image after projection improves later binarization
return img
def display(img):
cv.namedWindow('image',cv.WINDOW_NORMAL)
cv.resizeWindow('image', 1920, 1080)
cv.imshow('image', img)
if cv.waitKey(0) == 27:
cv2.destoyAllWindows()