forked from denisyarats/exorl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpretrain.py
346 lines (296 loc) · 14.2 KB
/
pretrain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
import warnings
from agents.unsupervised_learning.smm import SMMAgent
warnings.filterwarnings('ignore', category=DeprecationWarning)
import os
os.environ['MKL_SERVICE_FORCE_INTEL'] = '1'
os.environ['MUJOCO_GL'] = 'egl'
from pathlib import Path
import hydra
import agents
import numpy as np
import torch
import wandb
from dm_env import specs
from utils.env_constructor import make, ENV_TYPES
import utils.utils as utils
from utils.logger import Logger
from utils.replay_buffer import ReplayBufferStorage, make_replay_loader
from utils.video import TrainVideoRecorder, VideoRecorder
torch.backends.cudnn.benchmark = True
from libraries.dmc.dmc_tasks import PRIMAL_TASKS
from tqdm import tqdm
import libraries.safe.simple_point_bot as spb
def make_agent(obs_type, obs_spec, action_spec, num_expl_steps, cfg):
cfg.obs_type = obs_type
cfg.obs_shape = obs_spec.shape
cfg.action_shape = action_spec.shape
cfg.num_expl_steps = num_expl_steps
return hydra.utils.instantiate(cfg)
class Workspace:
def __init__(self, cfg):
self.work_dir = Path.cwd()
print(f'workspace: {self.work_dir}')
self.cfg = cfg
utils.set_seed_everywhere(cfg.seed)
self.device = torch.device(cfg.device)
# create logger
if cfg.use_wandb:
exp_name = '_'.join([
cfg.experiment, cfg.agent.name, cfg.domain, cfg.obs_type,
str(cfg.seed)
])
wandb.init(project="urlb", group=cfg.agent.name, name=exp_name)
self.logger = Logger(self.work_dir,
use_tb=cfg.use_tb,
use_wandb=cfg.use_wandb)
self.env_type = ENV_TYPES[self.cfg.domain]
# create envs
if self.env_type in ('gym', 'safe'):
task = self.cfg.domain
else:
task = PRIMAL_TASKS[self.cfg.domain]
self.train_env = make(task, cfg.obs_type, cfg.frame_stack,
cfg.action_repeat, cfg.seed, cfg.random_start)
self.eval_env = make(task, cfg.obs_type, cfg.frame_stack,
cfg.action_repeat, cfg.seed, cfg.random_start)
print(f"obs_type: {cfg.obs_type}")
print(f"obs_spec: {self.train_env.observation_spec()}")
print(f"action_spec: {self.train_env.action_spec()}")
print(f"num_expl_steps: {cfg.num_seed_frames // cfg.action_repeat}")
print(f"agent: {cfg.agent}")
# create agent
self.agent = make_agent(cfg.obs_type,
self.train_env.observation_spec(),
self.train_env.action_spec(),
cfg.num_seed_frames // cfg.action_repeat,
cfg.agent)
# get meta specs
meta_specs = self.agent.get_meta_specs()
# create replay buffer
data_specs = (self.train_env.observation_spec(),
self.train_env.action_spec(),
specs.Array((1,), np.float32, 'reward'),
specs.Array((1,), np.float32, 'discount'))
# create data storage
self.replay_storage = ReplayBufferStorage(data_specs, meta_specs,
self.work_dir / 'buffer')
# create replay buffer
self.replay_loader = make_replay_loader(self.replay_storage,
cfg.replay_buffer_size,
cfg.batch_size,
cfg.replay_buffer_num_workers,
False, cfg.nstep, cfg.discount)
self._replay_iter = None
# create video recorders
self.video_recorder = VideoRecorder(
self.work_dir if cfg.save_video else None,
camera_id=0 if 'quadruped' not in self.cfg.domain else 2,
use_wandb=self.cfg.use_wandb)
self.train_video_recorder = TrainVideoRecorder(
self.work_dir if cfg.save_train_video else None,
camera_id=0 if 'quadruped' not in self.cfg.domain else 2,
use_wandb=self.cfg.use_wandb)
self.timer = utils.Timer()
self._global_step = 0
self._global_episode = 0
@property
def global_step(self):
return self._global_step
@property
def global_episode(self):
return self._global_episode
@property
def global_frame(self):
return self.global_step * self.cfg.action_repeat
@property
def replay_iter(self):
if self._replay_iter is None:
self._replay_iter = iter(self.replay_loader)
return self._replay_iter
def eval(self):
step, episode, total_reward = 0, 0, 0
eval_until_episode = utils.Until(self.cfg.num_eval_episodes)
meta = self.agent.init_meta()
while eval_until_episode(episode):
time_step = self.eval_env.reset()
self.video_recorder.init(self.eval_env, enabled=(episode == 0))
while not time_step.last():
with torch.no_grad(), utils.eval_mode(self.agent):
action = self.agent.act(time_step.observation,
meta,
self.global_step,
eval_mode=True)
time_step = self.eval_env.step(action)
self.video_recorder.record(self.eval_env)
total_reward += time_step.reward
step += 1
episode += 1
self.video_recorder.save(f'{self.global_frame}.mp4')
with self.logger.log_and_dump_ctx(self.global_frame, ty='eval') as log:
log('episode_reward', total_reward / episode)
log('episode_length', step * self.cfg.action_repeat / episode)
log('episode', self.global_episode)
log('step', self.global_step)
# Make Reward heatmap's for smm
if type(self.agent) == SMMAgent and self.cfg.plot:
# p_star
reward_dir = os.path.join(self.work_dir, str(self.global_episode))
os.makedirs(reward_dir)
p_reward_func = lambda x: 100.0 * np.log(self.agent.get_goal_p_star(x))
self.plot_reward(reward_func=p_reward_func, env=self.eval_env, file=os.path.join(reward_dir, 'p_star.png'), z_prior=False)
# pred_log
pred_log_func = lambda x: self.agent.state_ent_coef * self.agent.smm.vae.loss(x)[1]
self.plot_reward(reward_func=pred_log_func, env=self.eval_env, file=os.path.join(reward_dir, 'cond_ent.png'), z_prior=True)
# h_z_s
def h_z_s_func(x):
obs = x[0, :2]
z = x[0, 2:]
logits = self.agent.smm.predict_logits(obs)
logits = torch.unsqueeze(logits, 0)
z = torch.unsqueeze(z, 0)
h_z_s = self.agent.latent_cond_ent_coef * self.agent.smm.loss(logits, z).unsqueeze(-1)
return h_z_s
self.plot_reward(reward_func=h_z_s_func, env=self.eval_env, file=os.path.join(reward_dir, 'h_z_s.png'), z_prior=True)
# h_z
def h_z_func(z):
z = z.to('cpu')
h_z = np.log(self.cfg.skill_dim) # One-hot z encoding
# h_z *= torch.ones_like(1).to(self.device)
h_z = torch.tensor(h_z)
return self.agent.latent_ent_coef * h_z
# intrinsic_reward
def intrinsic_reward(x):
x = x.to(self.device)
obs = x[:2]
z = x[2:]
p_reward = p_reward_func(obs)
p_reward = torch.tensor(p_reward)
p_reward = p_reward.to(self.device)
pred_log_reward = pred_log_func(x)
h_z_s_reward = h_z_s_func(x)
h_z_reward = h_z_func(z)
h_z_reward = h_z_reward.to(self.device)
# print(f'p_reward.shape: {p_reward.shape}, pred_log_reward.shape: {pred_log_reward.shape}, h_z_s_reward.shape: {h_z_s_reward.shape}, h_z_reward.shape: {h_z_reward.shape}')
int_reward = -p_reward + pred_log_reward + h_z_s_reward + h_z_reward
return int_reward
self.plot_reward(reward_func=intrinsic_reward, env=self.eval_env, file=os.path.join(reward_dir, 'int_reward.png'), z_prior=True)
def train(self):
# predicates
train_until_step = utils.Until(self.cfg.num_train_frames,
self.cfg.action_repeat)
seed_until_step = utils.Until(self.cfg.num_seed_frames,
self.cfg.action_repeat)
eval_every_step = utils.Every(self.cfg.eval_every_frames,
self.cfg.action_repeat)
snapshots = self.cfg.snapshots.copy()
snapshot = snapshots[0]
episode_step, episode_reward = 0, 0
time_step = self.train_env.reset()
meta = self.agent.init_meta()
self.replay_storage.add(time_step, meta)
self.train_video_recorder.init(time_step.observation)
metrics = None
while train_until_step(self.global_step):
if time_step.last():
self._global_episode += 1
self.train_video_recorder.save(f'{self.global_frame}.mp4')
# wait until all the metrics schema is populated
if metrics is not None:
# log stats
elapsed_time, total_time = self.timer.reset()
episode_frame = episode_step * self.cfg.action_repeat
with self.logger.log_and_dump_ctx(self.global_frame,
ty='train') as log:
log('fps', episode_frame / elapsed_time)
log('total_time', total_time)
log('episode_reward', episode_reward)
log('episode_length', episode_frame)
log('episode', self.global_episode)
log('buffer_size', len(self.replay_storage))
log('step', self.global_step)
# reset env
time_step = self.train_env.reset()
meta = self.agent.init_meta()
self.replay_storage.add(time_step, meta)
self.train_video_recorder.init(time_step.observation)
# try to save snapshot
if self.global_frame > snapshot:
self.save_snapshot()
snapshots = snapshots[1:]
snapshot = snapshots[0]
episode_step = 0
episode_reward = 0
# try to evaluate
if eval_every_step(self.global_step):
self.logger.log('eval_total_time', self.timer.total_time(),
self.global_frame)
self.eval()
meta = self.agent.update_meta(meta, self.global_step, time_step)
# sample action
with torch.no_grad(), utils.eval_mode(self.agent):
action = self.agent.act(time_step.observation,
meta,
self.global_step,
eval_mode=False)
# try to update the agent
if not seed_until_step(self.global_step):
metrics = self.agent.update(self.replay_iter, self.global_step)
# print(f'metrics: {metrics}')
self.logger.log_metrics(metrics, self.global_frame, ty='train')
# take env step
time_step = self.train_env.step(action)
episode_reward += time_step.reward
self.replay_storage.add(time_step, meta)
self.train_video_recorder.record(time_step.observation)
episode_step += 1
self._global_step += 1
def save_snapshot(self):
snapshot_dir = self.work_dir / Path(self.cfg.snapshot_dir)
snapshot_dir.mkdir(exist_ok=True, parents=True)
snapshot = snapshot_dir / f'snapshot_{self.global_frame}.pt'
keys_to_save = ['agent', '_global_step', '_global_episode']
payload = {k: self.__dict__[k] for k in keys_to_save}
with snapshot.open('wb') as f:
torch.save(payload, f)
def plot_reward(self, reward_func, env, file, z_prior=False, plot=True, show=False):
"""ONLY FOR SPB"""
if z_prior:
for z in range(self.cfg.skill_dim):
z_array = np.zeros(self.cfg.skill_dim, dtype=np.float32)
z_array[z] = 1.0
data = np.zeros((spb.WINDOW_HEIGHT, spb.WINDOW_WIDTH))
for y in tqdm(range(0, spb.WINDOW_HEIGHT)):
for x in range(0, spb.WINDOW_WIDTH):
obs = np.array((x, y), dtype=np.float32)
obs = np.concatenate((obs, z_array), axis=0)
obs = np.expand_dims(obs, axis=0)
obs = torch.tensor(obs)
obs = obs.to(self.cfg.device)
data[y, x] = reward_func(obs)
if plot:
split_file = file.split('.')
split_file[-2] = split_file[-2] + str(z)
file_name = '.'.join(split_file)
env.draw(heatmap=data, file=file_name, show=show)
else:
data = np.zeros((spb.WINDOW_HEIGHT, spb.WINDOW_WIDTH))
for y in tqdm(range(0, spb.WINDOW_HEIGHT)):
for x in range(0, spb.WINDOW_WIDTH):
obs = np.array([x, y])
obs = np.expand_dims(obs, axis=0)
obs = torch.tensor(obs)
data[y, x] = reward_func(obs)
if plot:
env.draw(heatmap=data, file=file, show=show)
@hydra.main(config_path='configs/.', config_name='pretrain')
def main(cfg):
from pretrain import Workspace as W
root_dir = Path.cwd()
workspace = W(cfg)
snapshot = root_dir / 'snapshot.pt'
if snapshot.exists():
print(f'resuming: {snapshot}')
workspace.load_snapshot()
workspace.train()
if __name__ == '__main__':
main()