-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathstock.py
147 lines (137 loc) · 7.05 KB
/
stock.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import streamlit as st
import numpy as np
import pandas as pd
import altair as alt
import matplotlib.pyplot as plt
class StockMarket:
def __init__(self):
self.stock_basic_df = pd.read_csv('data/stock_basic.csv')
self.stock_index_df = pd.read_csv('data/stock_index.csv')
# TODO 修改为蜡烛图:https://altair-viz.github.io/gallery/candlestick_chart.html
def sh_index_plot(self):
index_df = self.stock_index_df[self.stock_index_df['ts_code'] == '000001.SH'].sort_values(
by='trade_date').set_index('trade_date')
index_df.index = index_df.index.astype(str)
index_df['amount'] = index_df['amount'] / 1e5 # 千元 -> 亿元
options = index_df.index.tolist()
date = st.select_slider("请选择想要查询的日期", options=options, value=options[-240], key='sh_index_plot')
st.write("当前选择的起始日期是:", date)
pro_df = index_df.loc[date:, :].reset_index()
bars = alt.Chart(pro_df).mark_bar().encode(
x='trade_date',
y='amount'
)
line = alt.Chart(pro_df).mark_line(color='red').encode(
x='trade_date',
y='close'
)
# 将柱状图和折线图组合在一起
chart = alt.layer(line, bars).resolve_scale(y='independent')
st.altair_chart(chart, use_container_width=True)
def sz_index_plot(self):
index_df = self.stock_index_df[self.stock_index_df['ts_code'] == '399001.SZ'].sort_values(
by='trade_date').set_index('trade_date')
index_df.index = index_df.index.astype(str)
index_df['amount'] = index_df['amount'] / 1e5 # 千元 -> 亿元
options = index_df.index.tolist()
date = st.select_slider("请选择想要查询的日期", options=options, value=options[-240], key='sz_index_plot')
st.write("当前选择的起始日期是:", date)
pro_df = index_df.loc[date:, :].reset_index()
bars = alt.Chart(pro_df).mark_bar().encode(
x='trade_date',
y='amount'
)
line = alt.Chart(pro_df).mark_line(color='red').encode(
x='trade_date',
y='close'
)
# 将柱状图和折线图组合在一起
chart = alt.layer(line, bars).resolve_scale(y='independent')
st.altair_chart(chart, use_container_width=True)
def list_delist_plot(self):
# 按照月度聚合
stock_df = self.stock_basic_df.copy()
stock_df = stock_df[stock_df['ts_code'].apply(lambda x: ('SH' in x) or ('SZ' in x))] # 仅保留沪深
stock_df['list_year'] = stock_df['list_date'].apply(lambda x: str(x)[:4])
stock_df['list_month'] = stock_df['list_date'].apply(lambda x: str(x)[4:6])
stock_df['delist_year'] = stock_df['delist_date'].apply(lambda x: np.nan if str(x) == 'nan' else str(x)[:4])
stock_df['delist_month'] = stock_df['delist_date'].apply(lambda x: np.nan if str(x) == 'nan' else str(x)[4:6])
list_group_se = stock_df.groupby(['list_year', 'list_month'])['ts_code'].count().sort_index()
delist_group_se = stock_df.groupby(['delist_year', 'delist_month'])['ts_code'].count().sort_index()
list_delist_df = pd.concat([list_group_se, delist_group_se], axis=1)
list_delist_df.columns = ['上市', '退市']
list_delist_df = list_delist_df.reset_index()
list_delist_df['date'] = list_delist_df.apply(lambda x: f'{x.iloc[0]}{x.iloc[1]}', axis=1)
list_delist_df = list_delist_df.set_index('date').loc[:, ['上市', '退市']].sort_index()
options = list_delist_df.index.tolist()
date = st.select_slider("请选择想要查询的日期", options=options, value=options[-24], key='list_delist_plot')
st.write("当前选择的起始日期是:", date)
pro_df = list_delist_df.loc[date:, :].reset_index()
# 使用Altair创建柱状图
bar1 = alt.Chart(pro_df).mark_bar().encode(
x=alt.X('date:O', title='Date'),
y=alt.Y('上市:Q', title='上市'),
xOffset='variable:N'
).transform_calculate(
variable='"上市"'
)
bar2 = alt.Chart(pro_df).mark_bar(color='red').encode(
x=alt.X('date:O', title='Date'),
y=alt.Y('退市:Q', title='退市'),
xOffset='variable:N'
).transform_calculate(
variable='"退市"'
)
# 将柱状图和折线图组合在一起
chart = alt.layer(bar1, bar2).resolve_scale(
y='independent'
)
st.altair_chart(chart, use_container_width=True)
def list_index_plot(self):
# 构建出大盘指数每月最后一天的收盘价
index_df = self.stock_index_df[self.stock_index_df['ts_code'] == '000001.SH'].sort_values(
by='trade_date')
index_df['month'] = index_df['trade_date'].astype(str).apply(lambda x: x[:6])
month_index_df = index_df.drop_duplicates(subset='month', keep='last')
month_index_df = month_index_df.set_index('month')['close']
# 构建每月上市的股票数量
stock_df = self.stock_basic_df.copy()
stock_df = stock_df[stock_df['ts_code'].apply(lambda x: ('SH' in x) or ('SZ' in x))] # 仅保留沪深
stock_df['list_year'] = stock_df['list_date'].apply(lambda x: str(x)[:4])
stock_df['list_month'] = stock_df['list_date'].apply(lambda x: str(x)[4:6])
list_group_se = stock_df.groupby(['list_year', 'list_month'])['ts_code'].count().sort_index()
list_group_df = list_group_se.reset_index()
list_group_df['month'] = list_group_df.apply(lambda x: f'{x.iloc[0]}{x.iloc[1]}', axis=1)
list_group_df = list_group_df.set_index('month').iloc[:, 2].sort_index()
# 合并展示
merge_df = pd.concat([month_index_df, list_group_df], axis=1).sort_index()
merge_df.columns = ['上证指数', '上市数量']
options = merge_df.index.tolist()
date = st.select_slider("请选择想要查询的日期", options=options, value=options[-24], key='list_index_plot')
st.write("当前选择的起始日期是:", date)
pro_df = merge_df.loc[date:, :].reset_index()
bars = alt.Chart(pro_df).mark_bar().encode(
x='month',
y='上市数量'
)
line = alt.Chart(pro_df).mark_line(color='red').encode(
x='month',
y='上证指数'
)
# 将柱状图和折线图组合在一起
chart = alt.layer(line, bars).resolve_scale(y='independent')
st.altair_chart(chart, use_container_width=True)
def stock_market_analysis():
stock_market = StockMarket()
st.title('上证指数走势图')
st.write('单位:特殊单位/亿元@日')
stock_market.sh_index_plot()
st.title('深圳成指走势图')
st.write('单位:特殊单位/亿元@日')
stock_market.sz_index_plot()
st.title('每月上市/退市情况')
st.write('单位:个数@日')
stock_market.list_delist_plot()
st.title('每月上证指数和上市数量')
st.write('单位:特殊单位/个数@日')
stock_market.list_index_plot()