-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathcrossdata_experiment_chembl.py
60 lines (48 loc) · 2.19 KB
/
crossdata_experiment_chembl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
# Initialize connection with rest of lib
import logging
import rdkit
from utils import *
from DL_ClassifierModel import *
import os
from pathlib import Path
import torch
#The path with the pre-saved model parameters
model_path = Path(os.path.join("data", "chembl", "chembl_model_0_996.pkl"))
method = 'p_Embedding_Bridge'
# Define dataset paths
data_bdb = "bindingdb"
data_human = "human"
#Get paths for the datasets
data_path_bdb = Path(os.path.join("data", data_bdb))
assert data_path_bdb.exists()
data_path_human = Path(os.path.join("data", data_human))
assert data_path_human.exists()
# Define log file
log_file = 'results_crossdatasets_chEMBL'
#Function to log
def write_to_file(dataset_name, stats, save_path):
file = open(f"{save_path}.txt","a")
file.write(f'Prediction from chEMBL on: {dataset_name}\n')
file.write(f'ACC = {stats[0]}, AUC = {stats[1]}, Precision = {stats[2]}, Recall = {stats[3]}, F1 = {stats[4]}')
file.write('\n')
file.close()
experiments = ['bindingdb', 'human']
for experiment in experiments:
if experiment == "bindingdb":
data_class = LoadBindingDB(dataPath = data_path_bdb, model_name=method, save_d_names=False)
elif experiment == "human":
data_class = LoadCelegansHuman(dataPath = data_path_human, model_name=method, save_d_names=False)
#Load the p_Embedding_Bridge model and parametrize it
model = p_Embedding_Bridge(outSize=128,
cHiddenSizeList=[1024],
fHiddenSizeList=[1024, 256],
fSize=1024, cSize=8424,
gcnHiddenSizeList=[128, 128], fcHiddenSizeList=[128], nodeNum=64,
hdnDropout=0.5, fcDropout=0.5, device=torch.device('cuda'))
model.load(path=model_path, map_location="cuda", dataClass=data_class)
model.to_eval_mode()
metrictor = Metrictor()
Ypre, Y, seenbool = model.calculate_y_with_seenbool(data_class.one_epoch_batch_data_stream(batchSize=128, type='test', device=torch.device('cuda')))
metrictor.set_data(Ypre, Y)
test_stats = [metrictor.ACC(), metrictor.AUC(), metrictor.Precision(), metrictor.Recall(), metrictor.F1()]
write_to_file(experiment, test_stats, log_file)