forked from interactivereport/cellxgene_VIP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathviolin.R
executable file
·180 lines (162 loc) · 7.37 KB
/
violin.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
#!/usr/bin/env Rscript
args = commandArgs(trailingOnly = TRUE)
if(length(args)<1) q()
libPath = tail(args,1)
if(nchar(libPath)>3){
addPath <- unlist(strsplit(libPath,";"))
addPath <- addPath[sapply(addPath,dir.exists)]
.libPaths(c(addPath,.libPaths()))
}
loadPackages <- function(){
require(ggplot2)
require(dplyr)
require(RColorBrewer)
require(glue)
require(ggpubr)
require(gridExtra)
}
suppressMessages(suppressWarnings(loadPackages()))
options(bitmapType='cairo')
violinPlot <- function(X,cutoff=0){
#X[cells,(gene.name,grouping,subgrouping)]
gene.name <- colnames(X)[1]
colnames(X)[1] <- 'count'
color.type <- fill.type <- grouping <- colnames(X)[2]
paired.type <- "Unpaired Comparison"
if(ncol(X)>2){
color.type <- fill.type <- colnames(X)[3]
paired.type <- "Paired Comparison"
}
X <- cbind(X,ordering=as.numeric(X[,grouping]))
per.obj <- X %>% group_by(!!sym(grouping)) %>%
mutate(n.per = sum(count>cutoff) / length(count),
average.count = sum(count, na.rm=TRUE) / length(count),
gene.id = gene.name) %>%
dplyr::select(!!grouping, n.per, average.count, ordering, gene.id) %>% unique() %>% as.data.frame() %>%
mutate(!!sym(grouping) := reorder(!!sym(grouping), ordering) ) %>% #keep the reorder
mutate(n.per.bin = cut(n.per, breaks=c(-Inf,0.2,0.4,0.6,0.8,Inf),
labels = c("<20%","<40%","<60%","<80%",">80%"))
) #n.per will be used as a size scale, but continuous size scale is not informative, will bin them to a discrete scale
# The ggplot becomes generalized
gg_color_hue <- function(n) {
hues = seq(15, 375, length = n + 1)
hcl(h = hues, l = 65, c = 100)[1:n]
}
fill.expand <- gg_color_hue( length( levels(as.factor(X[[fill.type]])) ) )
#Point color needs additional levels based on selection to use alternative palette
colors.expand <- colorRampPalette(brewer.pal(8, "Dark2"))( length( levels(as.factor(X[[color.type]])) ) )
if(paired.type == "Unpaired Comparison"){
general.violin <- ggplot(X, aes_string(x = grouping, y= "count" )) +
geom_violin(aes_string(fill = fill.type), draw_quantiles = 0.5, alpha=0.2) +
geom_jitter(aes_string(colour = color.type), size = 0.2,position = position_jitter(0.2)) +
scale_color_manual(values = colors.expand, name = glue("{color.type}.color")) +
scale_fill_manual(values = fill.expand, name = glue("{fill.type}.fill") ) +
stat_summary(
fun=mean,fun.min=mean,fun.max=mean,
#fun.y = mean, fun.ymin = mean, fun.ymax = mean,
geom = "point",pch=8, color="red",size=2.25,
position = position_dodge(width = .25)
) +
theme_bw() +
theme(axis.text.x = element_text(angle = 90, size=rel(1.25)),
axis.text.y = element_text(size = rel(1.25)),
axis.title = element_text(size = rel(1.25)),
legend.text = element_text(size=rel(1.25)),
legend.title = element_text(size=rel(1.25)),
legend.margin = margin(r=100) #Not ideal but provides some right margin pad, may want to make generic legend label
) +
labs(y = "log2(Normalized Counts + 1)"
#title = paste0(gene.name," in ",cluster,". The horizontal line in the violin plot represents the median")
) +
guides(colour = guide_legend(title=glue("{color.type} "), override.aes = list(size=5) ), fill = guide_legend(title=glue("{fill.type}")) )
}
if(paired.type == "Paired Comparison"){
general.violin <- ggplot(X, aes_string(x = grouping, y= "count" )) +
geom_violin(aes_string(fill = fill.type), draw_quantiles = 0.5, alpha=0.2, position = position_dodge(0.75) ) +
geom_point(aes_string(colour = color.type), size = 0.2, position = position_jitterdodge(seed=1, dodge.width = 0.75) ) +
#geom_jitter(aes_string(colour = color.type), size = 0.2, position = position_jitter(0.2)) +
scale_color_manual(values = colors.expand, name = glue("{color.type}.color")) +
scale_fill_manual(values = fill.expand, name = glue("{fill.type}.fill") ) +
stat_summary(
aes_string(group=color.type),
fun=mean,
fun.min=mean,
fun.max=mean,
#fun.y = mean, fun.ymin = mean, fun.ymax = mean,
geom = "point",pch=8, color="red",size=2.25,
position = position_dodge(width = 0.75)
) +
theme_bw() +
theme(axis.text.x = element_text(angle = 90, size=rel(1.25)),
axis.text.y = element_text(size = rel(1.25)),
axis.title = element_text(size = rel(1.25)),
legend.text = element_text(size=rel(1.25)),
legend.title = element_text(size=rel(1.25)),
legend.margin = margin(r=100) #Not ideal but provides some right margin pad, may want to make generic legend label
) +
labs(y = "log2(Normalized Counts + 1)"
#title = paste0(gene.name," in ",cluster,". The horizontal line in the violin plot represents the median")
) +
guides(colour = guide_legend(title=glue("{color.type} "), override.aes = list(size=5) ), fill = guide_legend(title=glue("{fill.type}")) )
}
#Make a ggplot for the expression dots
per.dots <- ggplot(per.obj, aes_string(x = grouping, y = "gene.id", color = "average.count", size = "n.per.bin") ) +
geom_point() +
scale_size_manual(name = "Percent \nExpr.\n(binned)", values = c("<20%"=2,"<40%"=6,"<60%"=10,"<80%"=14,">80%"=18)) +
theme_bw() +
labs(y="Gene Name", color="Avg.\nNorm. \nCount") +
theme(legend.position = "right",
legend.margin = margin(r=100),
legend.text = element_text(size=rel(1.25)),
legend.title = element_text(size=rel(1.25)),
axis.text.x = element_text(angle = 90, size = rel(1.25)),
axis.title.x = element_blank(),
axis.line = element_blank(),
axis.text.y = element_text(angle=90, hjust=0.5, vjust=0.5, size=rel(1.25)),
axis.title.y = element_text(size=rel(1.25)),
plot.margin = margin(t = 25)
)
#Combine the expression dots and the general violin plot
annotate_figure(
ggarrange( ggarrange(per.dots, general.violin, nrow=2, align="v", heights = c(1.5,4), legend="none"),
ggarrange(NULL, ncol=1),
widths=c(4,0.75),
common.legend = TRUE,
legend = "right",
legend.grob = arrangeGrob(grobs = list(get_legend(per.dots),get_legend(general.violin)))
),
top = text_grob(""),
fig.lab = paste0(gene.name,". The horizontal line in the violin plot represents the median.\n The red star represents the mean."), fig.lab.size=14
)
}
strCSV = args[1]
expCut <- as.numeric(args[2])
strFun <- args[3]
fontsize <- as.numeric(args[4])
dpi <- as.numeric(args[5])
## process
mtable <- read.csv(strCSV,check.names=F)
## remove 0 on the violin plot
#mtable <- mtable[mtable[,1]>=expCut,]
g <- violinPlot(mtable,expCut)
## plot
grpN <- compN <- nlevels(mtable[,2])
if(ncol(mtable)>2){
grpN <- length(unique(apply(mtable,1,function(x)return(paste(x[-1],collapse="::")))))
compN <- nlevels(mtable[,3])
}
w <- max(8,2+round(2*grpN/3,1))
h <- max(8,compN/2)
strImg <- gsub("csv$",strFun,strCSV)
f <- get(strFun)
if(sum(strFun%in%c('png','jpeg','tiff'))>0){
f(strImg, width=w, height=h,units='in',res=dpi)
}else{
f(strImg, width=w, height=h)
}
print(g)
a <- dev.off()
fig = base64enc::dataURI(file = strImg)
cat(gsub("data:;base64,","",fig))
a <- file.remove(strImg)
#./violin.R /share/oyoung/violin.csv Gene1 pdf 10 300