-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
103 lines (86 loc) · 4.1 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
import argparse
import collections
import torch
import numpy as np
import data_loader.data_loaders as module_data
import model.loss as module_loss
import model.metric as module_metric
from model.model import hyperiDPath as module_arch
from parse_config import ConfigParser
from trainer import Trainer
# fix random seeds for reproducibility
SEED = 123
torch.manual_seed(SEED)
torch.cuda.manual_seed(SEED)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
np.random.seed(SEED)
def main(config):
# 训练的日志
logger = config.get_logger('train')
# setup data_loader instances
data_loader = config.init_obj('data_loader', module_data)
valid_data_loader = data_loader.split_dataset(valid=True)
test_data_loader = data_loader.split_dataset(test=True)
lap_raw = data_loader.get_sparse_lap_raw_hg()
lap_dual = data_loader.get_sparse_lap_dual_hg()
node_num = data_loader.get_node_num()
hyperedge_num = data_loader.get_hyperedge_num()
type_num = data_loader.get_type_num()
# build model architecture, then print to console
model = module_arch(node_num=node_num,
type_num=type_num,
hyperedge_num=hyperedge_num,
node_lap=lap_raw,
hyperedge_lap=lap_dual,
emb_dim=config['arch']['args']['emb_dim'],
hypergcn_layersize=config['arch']['args']['hypergcn_layersize'],
dropout=config['arch']['args']['dropout'])
logger.info(model)
# get function handles of loss and metrics
criterion = getattr(module_loss, config['loss'])
metrics = [getattr(module_metric, met) for met in config['metrics']]
# build optimizer, learning rate scheduler. delete every lines containing lr_scheduler for disabling scheduler
trainable_params = filter(lambda p: p.requires_grad, model.parameters())
optimizer = config.init_obj('optimizer', torch.optim, trainable_params)
lr_scheduler = config.init_obj('lr_scheduler', torch.optim.lr_scheduler, optimizer)
trainer = Trainer(model, criterion, metrics, optimizer,
config=config,
data_loader=data_loader,
valid_data_loader=valid_data_loader,
test_data_loader=test_data_loader,
lr_scheduler=lr_scheduler)
trainer.train()
"""Test."""
logger = config.get_logger('test')
logger.info(model)
test_metrics = [getattr(module_metric, met) for met in config['metrics']]
# load best checkpoint
resume = str(config.save_dir / 'model_best.pth')
logger.info('Loading checkpoint: {} ...'.format(resume))
checkpoint = torch.load(resume)
state_dict = checkpoint['state_dict']
model.load_state_dict(state_dict)
test_output = trainer.test()
log = {'loss': test_output['total_loss'] / test_output['n_samples']}
log.update({
met.__name__: test_output['total_metrics'][i].item() / test_output['n_samples'] \
for i, met in enumerate(test_metrics)})
logger.info(log)
if __name__ == '__main__':
args = argparse.ArgumentParser(description='hyperiDpath Template')
args.add_argument('-c', '--config', default="config/config.json", type=str,
help='config file path (default: None)')
args.add_argument('-r', '--resume', default=None, type=str,
help='path to latest checkpoint (default: None)')
args.add_argument('-d', '--device', default=None, type=str,
help='indices of GPUs to enable (default: all)')
# custom cli options to modify configuration from default values given in json file.
CustomArgs = collections.namedtuple('CustomArgs', 'flags type target')
options = [
CustomArgs(['--lr', '--learning_rate'], type=float, target='optimizer;args;lr'),
CustomArgs(['--bs', '--batch_size'], type=int, target='data_loader;args;batch_size'),
CustomArgs(['--mpn', '--max_path_num'], type=int, target='data_loader;args;max_path_num')
]
config = ConfigParser.from_args(args, options)
main(config)