-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathnoTL_goal.py
299 lines (244 loc) · 12.4 KB
/
noTL_goal.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
# import ipdb; ipdb.set_trace()
import numpy as np
import os, random, subprocess, time
from lib import plotting, py_asp, helper, induction, abduction
import gym, gym_vgdl
from random import randint
import config as cf
def run_experiment(env, i_episode, stats_test, width, time_range):
_ = env.reset()
t = 0
agent_position = env.unwrapped.observer.get_observation()["position"]
abduction.update_agent_position(agent_position, t)
abduction.update_time_range(agent_position, t)
answer_sets = abduction.run_clingo(cf.CLINGOFILE)
states_plan, actions_array = abduction.sort_planning(answer_sets)
while t < time_range:
is_done = False
print("testing phase....")
for _, action in enumerate(actions_array):
env.render()
# time.sleep(0.1)
action_int = helper.get_action(action[1])
_, reward, done, _ = env.step(action_int)
if done:
reward = reward + 10
else:
reward = reward - 1
print("reward here is ", reward)
print("i_episode here is ", i_episode)
# Update stats
stats_test.episode_rewards[i_episode] += reward
stats_test.episode_lengths[i_episode] = t
t = t + 1
if done:
is_done = True
break
if is_done:
break
if not is_done:
# If clingo does not give you a right path, just accumulate -1 punishment
action_int = 4
_, reward, done2, _ = env.step(action_int)
if done2:
reward = reward + 10
else:
reward = reward - 1
stats_test.episode_rewards[i_episode] += reward
stats_test.episode_lengths[i_episode] = t
t = t + 1
def k_learning(env, num_episodes, goal_state, epsilon=0.1, record_prefix=None, is_link=False):
# Get cell range for the game
height = env.unwrapped.game.height
width = env.unwrapped.game.width
cell_range = "\ncell((0..{}, 0..{})).\n".format(width-1, height-1)
# Log everything and keep the record here
log_dir = None
if record_prefix:
log_dir = os.path.join(cf.BASE_DIR, "log")
log_dir = helper.gen_log_dir(log_dir, record_prefix)
keep_link = None
# Clean up all the files first
helper.silentremove(cf.BASE_DIR, cf.GROUNDING)
helper.silentremove(cf.BASE_DIR, cf.LASFILE)
helper.silentremove(cf.BASE_DIR, cf.CLINGOFILE)
helper.silentremove(cf.BASE_DIR, cf.LAS_CACHE, cf.LAS_CACHE_PATH)
helper.create_file(cf.BASE_DIR, cf.LAS_CACHE, cf.LAS_CACHE_PATH)
cf.ALREADY_LINK = False
# Add mode bias and adjacent definition for ILASP
induction.copy_las_base(height, width, cf.LASFILE, is_link)
first_abduction = False
# record the current hypothesis
hypothesis = ""
abduction.make_lp_base(cell_range)
wall_list = induction.get_all_walls(env)
stats = plotting.EpisodeStats(
episode_lengths=np.zeros(num_episodes),
episode_rewards=np.zeros(num_episodes),
episode_runtime=np.zeros(num_episodes))
stats_ilasp = plotting.TimeStats(
ILASP_runtime=np.zeros((num_episodes,cf.TIME_RANGE)))
stats_test = plotting.EpisodeStats(
episode_lengths=np.zeros(num_episodes),
episode_rewards=np.zeros(num_episodes),
episode_runtime=np.zeros(num_episodes))
answer_sets = ['']
for i_episode in range(num_episodes):
print("==============NEW EPISODE======================")
print("i_episode ", i_episode)
start_total_runtime = time.time()
previous_state = env.reset()
agent_position = env.unwrapped.observer.get_observation()["position"]
previous_state_at = py_asp.state_at(previous_state[0], previous_state[1], 0)
t = 0
# Convert syntax of H for ASP solver
if not first_abduction:
hypothesis_asp = py_asp.convert_las_asp(hypothesis)
abduction.add_hypothesis(hypothesis_asp)
abduction.add_start_state(agent_position)
abduction.add_goal_state(goal_state)
answer_sets = abduction.run_clingo(cf.CLINGOFILE)
first_abduction = True
# Once the agent reaches the goal, the algorithm kicks in
if answer_sets != ['']:
# Decaying epsilon greedy params
new_epsilon = epsilon
# new_epsilon = epsilon*(1/(i_episode+1)**cf.DECAY_PARAM)
# print("new_epsilon ", new_epsilon)
while t < cf.TIME_RANGE:
# if first_abduction == False:
# # Convert syntax of H for ASP solver
# hypothesis_asp = py_asp.convert_las_asp(hypothesis)
# abduction.add_hypothesis(hypothesis_asp)
# abduction.add_start_state(agent_position)
# abduction.add_goal_state(goal_state)
# first_abduction = True
# Update the starting position for Clingo
agent_position = env.unwrapped.observer.get_observation()["position"]
abduction.update_agent_position(agent_position, t)
abduction.update_time_range(agent_position, t)
# Run clingo to get a plan
answer_sets = abduction.run_clingo(cf.CLINGOFILE)
states_plan, actions_array = abduction.sort_planning(answer_sets)
# Record clingo
if record_prefix:
inputfile = os.path.join(cf.BASE_DIR, cf.CLINGOFILE)
helper.log_asp(inputfile, answer_sets, log_dir, i_episode, t)
# Execute the planning
for action_index, action in enumerate(actions_array):
print("---------Planning phase---------------------")
# Flip a coin. If threshold < epsilon, explore randomly
threshold = random.uniform(0,1)
if threshold < new_epsilon:
action_int = randint(0, 3)
if cf.IS_PRINT:
print("Taking a pure random action...", helper.convert_action(action_int))
else:
# Following the plan
action_int = helper.get_action(action[1])
if cf.IS_PRINT:
print("Following the plan...", helper.convert_action(action_int))
action_string = helper.convert_action(action_int)
next_state, reward, done, _ = env.step(action_int)
next_state_at = py_asp.state_at(next_state[0], next_state[1], t+1)
if done:
reward = reward + 10
else:
reward = reward - 1
# Meanwhile, accumulate all background knowlege
abduction.add_new_walls(previous_state, wall_list, cf.CLINGOFILE)
# Make ASP syntax of state transition
pos1, pos2,link = induction.generate_pos(hypothesis, previous_state, next_state, action_string, wall_list, cell_range)
if link is not None:
keep_link = link
# Update H if necessary
if (not induction.check_ILASP_cover(hypothesis, pos1, height, width, keep_link)) or (not induction.check_ILASP_cover(hypothesis, pos2, height, width, keep_link)):
start_time = time.time()
hypothesis = induction.run_ILASP(cf.LASFILE, cf.CACHE_DIR)
ilasp_runtime = (time.time()-start_time)
stats_ilasp.ILASP_runtime[i_episode,t] += ilasp_runtime
if hypothesis == "UNSATISFIABLE\n":
import ipdb; ipdb.set_trace()
# Convert syntax of H for ASP solver
hypothesis_asp = py_asp.convert_las_asp(hypothesis)
abduction.update_h(hypothesis_asp)
if record_prefix:
inputfile = os.path.join(cf.BASE_DIR, cf.LASFILE)
helper.log_las(inputfile, hypothesis, log_dir, i_episode, t)
previous_state = next_state
previous_state_at = next_state_at
# Update stats
stats.episode_rewards[i_episode] += reward
stats.episode_lengths[i_episode] = action_index
env.render()
# time.sleep(0.1)
t = t + 1
if done or (threshold < new_epsilon):
break
if not actions_array:
t = t + 1
if done:
break
# Random action until ILASP kicks in
else:
for tt in range(cf.TIME_RANGE):
env.render()
# time.sleep(0.1)
# Update the starting position for Clingo
agent_position = env.unwrapped.observer.get_observation()["position"]
abduction.update_agent_position(agent_position, tt)
abduction.update_time_range(agent_position, tt)
answer_sets = abduction.run_clingo(cf.CLINGOFILE)
if answer_sets != [""]:
t == tt
break
# Take a step
action = randint(0, 3)
next_state, reward, done, _ = env.step(action)
action_string = helper.convert_action(action)
if done:
reward = reward + 10
goal_state = next_state
reached_goal = True
else:
reward =reward - 1
# Meanwhile, accumulate all background knowlege
abduction.add_new_walls(previous_state, wall_list, cf.CLINGOFILE)
# Make ASP syntax of state transition and send it to LASFILE
pos1, pos2,link = induction.generate_pos(hypothesis, previous_state, next_state, action_string, wall_list, cell_range)
if link is not None:
keep_link = link
# Update H if necessary
if(not induction.check_ILASP_cover(hypothesis, pos1, height, width, keep_link) or not induction.check_ILASP_cover(hypothesis, pos2, height, width, keep_link) or hypothesis == ''):
start_time = time.time()
hypothesis = induction.run_ILASP(cf.LASFILE, cf.CACHE_DIR)
ilasp_runtime = (time.time()-start_time)
stats_ilasp.ILASP_runtime[i_episode,tt] += ilasp_runtime
if hypothesis == "UNSATISFIABLE\n":
import ipdb; ipdb.set_trace()
hypothesis_asp = py_asp.convert_las_asp(hypothesis)
abduction.update_h(hypothesis_asp)
if record_prefix:
inputfile = os.path.join(cf.BASE_DIR, cf.LASFILE)
helper.log_las(inputfile, hypothesis, log_dir, i_episode, tt)
previous_state = next_state
# Update stats
stats.episode_rewards[i_episode] += reward
stats.episode_lengths[i_episode] = tt
if done:
break
stats.episode_runtime[i_episode] += (time.time()-start_total_runtime)
run_experiment(env, i_episode, stats_test, width, cf.TIME_RANGE)
return stats, stats_test,stats_ilasp
env = gym.make('vgdl_experiment4_after-v0')
goal = (16,1)
temp_dir = os.path.join(cf.BASE_DIR, "result_pkl/experiment4_after_noTL_goal")
for i in range(30):
stats, stats_test,stats_ilasp = k_learning(env, 100, goal, epsilon=0.1, record_prefix="exp4_noTL_goal", is_link=True)
# stats, stats_test,stats_ilasp = k_learning(env, 100, goal, epsilon=0.1, record_prefix=None, is_link=False)
plotting.store_stats(stats, temp_dir, "exp4_v{}".format(str(i)))
plotting.store_stats(stats_test, temp_dir, "exp4_test_v{}".format(str(i)))
plotting.store_stats(stats_ilasp, temp_dir, "exp4_ilasp_v{}".format(str(i)))
# stats, stats_test,stats_ilasp = k_learning(env, 100, epsilon=0.1, record_prefix=None, is_link=None)
# plotting.plot_episode_stats_simple(stats, smoothing_window=1)
# plotting.plot_episode_stats_simple(stats_test, smoothing_window=1)