Skip to content

All information about sorting algorithm you need and you can visualize the code tracer

Notifications You must be signed in to change notification settings

7oSkaaa/Sorting-Algorithms

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

48 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Sorting-Algorithms

This Repo have all information needed to study Sorting Algorithm and there is a tracer to see how the algorithm work

You can see how to algorithm run with two way you can use the button of Generate Nums to generate array and see how the algorithm work or you can enter your numbers that you want to check them by write them in the text box seperated by spaces and use button Use my Numbers to use them to see how the algorithms work

Requirements

For Linux Users only

open your terminal

sudo apt install python3
sudo apt install python3-tk

How to run

Linux

git clone https://github.com/7oSkaaa/Sorting-Algorithms.git
cd Sorting-Algorithms
python3 main.py

Windows

you can download the repo as zip and extract it

OR

you can use cmd

git clone https://github.com/7oSkaaa/Sorting-Algorithms.git

go to the folder of the repo and just double click on main.exe

Video:

Sorting.Algorithms.mp4

You can read the information about each algorithm from the algorithms and go to the tracer and run it to see how the algorithm work

Bubble Sort

Bubble Sort is the simplest sorting algorithm that works by repeatedly swapping the adjacent elements if they are in wrong order.

Time Complexity

Best Case is O(n)

Worst Case is O(n2)

Pseudocode

begin BubbleSort(list)

   for all elements of list
      if list[i] > list[i+1]
         swap list[i] and list[i + 1]
   return list
   
end BubbleSort

Code

C++

void Bubble_Sort(vector < int >& nums){
    int n = nums.size();
    for(int i = 0; i < n - 1; i++){
        bool is_sorted = true;
        for(int j = 0; j < n - i - 1; j++){
            if(nums[j] > nums[j + 1])
                swap(nums[j], nums[j + 1]), is_sorted = false;
        }
        if(is_sorted) return;
    }
}

C

void swap(int *x, int *y){
    int temp = *x;
    *x = *y, *y = temp;
}

void bubbleSort(int* arr, int n){
   int i, j;
   for (i = 0; i < n - 1; i++)      
       for (j = 0; j < n - i - 1; j++) 
           if (arr[j] > arr[j + 1])
              swap(&arr[j], &arr[j + 1]);
}

Python

def bubble_sort(data):
    size = len(data)
    for i in range(size - 1):
        for j in range(size - i - 1):
            if data[j] > data[j + 1]:
                data[j], data[j + 1] = data[j + 1], data[j]

Java

void bubbleSort(int arr[]){
    int n = arr.length;
    for (int i = 0; i < n - 1; i++)
        for (int j = 0; j < n - i - 1; j++)
            if (arr[j] > arr[j + 1]){
                int temp = arr[j];
                arr[j] = arr[j + 1];
                arr[j + 1] = temp;
            }
}

JavaScript

const bubbleSort = (arr) => {
    const n = arr.length;

    for (let i = 0; i < n - 1; i++) {
        for (let j = 0; j < n - i - 1; j++) {
            if (arr[j] > arr[j + 1]) {
                [arr[j], arr[j + 1]] =  [arr[j + 1], arr[j]];
            }
        }
    }
}

Selection Sort

The selection sort algorithm sorts an array by repeatedly finding the minimum element (considering ascending order) from unsorted part and putting it at the beginning. The algorithm maintains two subarrays in a given array.

  1. The subarray which is already sorted.
  2. Remaining subarray which is unsorted. In every iteration of selection sort, the minimum element (considering ascending order) from the unsorted subarray is picked and moved to the sorted subarray.

Time Complexity

Best Case is O(n2)

Worst Case is O(n2)

Pseudocode

begin SelectionSort(list)
    for i from 0 to n - 2 do:
      min = i
      for j from i + 1 to n - 1 do:
        if list[j] < list[min]: Min = j
      swap list[j] and list[min]
end SelectionSort

Code

C++

void Selection_Sort(vector < int >& nums){
    int n = nums.size();
    for(int i = 0; i < n - 1; i++){
        int min = i;
        for(int j = i + 1; j < n; j++){
            if(nums[j] < nums[min])
                min = j;
        }
        swap(nums[i], nums[min]);
    }
}

C

void swap(int *x, int *y){
    int temp = *x; 
    *x = *y, *y = temp;
}
 
void selectionSort(int* arr, int n){
    int i, j, min_idx;
    for (i = 0; i < n - 1; i++){
        min_idx = i;
        for (j = i + 1; j < n; j++)
          if (arr[j] < arr[min_idx])
            min_idx = j;
        swap(&arr[min_idx], &arr[i]);
    }
}```


#### Python

```Python
def selection_sort(data):
    for i in range(len(data) - 1):
        Min_Idx = i
        for k in range(i + 1, len(data)):
            if data[k] < data[Min_Idx]:
                Min_Idx = k

Java

void selection_sort(int arr[]){
    int n = arr.length;
    for (int i = 0; i < n - 1; i++){
        int min_idx = i;
        for (int j = i + 1; j < n; j++)
            if (arr[j] < arr[min_idx])
                min_idx = j;
        int temp = arr[min_idx];
        arr[min_idx] = arr[i];
        arr[i] = temp;
    }
}

JavaScript

const selectionSort = (arr) => {
    const n = arr.length;

    for (let i = 0; i < n - 1; i++){
        let min_idx = i;

        for (let j = i + 1; j < n; j++) {
            if (arr[j] < arr[min_idx]) min_idx = j;
        }

        [arr[min_idx], arr[i]] = [arr[i], arr[min_idx]];
    }
}

Insertion Sort

Insertion sort is a simple sorting algorithm that works similar to the way you sort playing cards in your hands. The array is virtually split into a sorted and an unsorted part. Values from the unsorted part are picked and placed at the correct position in the sorted part. Algorithm To sort an array of size n in ascending order:

  1. Iterate from arr[1] to arr[n] over the array.
  2. Compare the current element (key) to its predecessor.
  3. If the key element is smaller than its predecessor, compare it to the elements before. Move the greater elements one position up to make space for the swapped element.

Time Complexity

Best Case is O(n)

Worst Case is O(n2)

Pseudocode

begin InsertionSort(list)
    for i from 1 to n - 1 do:
      v = list[i]
      j = i - 1
      while j >= 0 and list[j] > v do:
          list[j + 1] = list[j]
          j = j - 1
      list[j + 1] = v
end SelectionSort

Code

C++

void Insertion_Sort(vector < int >& nums){
    int n = nums.size();
    for(int i = 1; i < n; i++){
        int value = nums[i], j = i - 1;
        while(j >= 0 && nums[j] > value)
            nums[j + 1] = nums[j], j--;
        nums[j + 1] = value;
    }
}

C

void insertionSort(int* arr, int n){
    int i, key, j;
    for (i = 1; i < n; i++) {
        key = arr[i];
        j = i - 1;
        while (j >= 0 && arr[j] > key) {
            arr[j + 1] = arr[j];
            j = j - 1;
        }
        arr[j + 1] = key;
    }
}

Python

def insertion_sort(data):
    for i in range(len(data)):
        temp = data[i]
        k = i
        while k > 0 and temp < data[k - 1]:
            data[k] = data[k - 1]; k -= 1
        data[k] = temp

Java

void insertion_sort(int arr[]){
    int n = arr.length;
    for (int i = 1; i < n; ++i) {
        int key = arr[i];
        int j = i - 1;
        while (j >= 0 && arr[j] > key) {
            arr[j + 1] = arr[j];
            j -= 1;
        }
        arr[j + 1] = key;
    }
}

JavaScript

const insertionSort = (arr) => {
    const n = arr.length;
    
    for (let i = 1; i < n; i++) {
        let key = arr[i];
        let j = i - 1;
        
        while (j >= 0 && arr[j] > key) {
            arr[j + 1] = arr[j];
            j -= 1;
        }
        
        arr[j + 1] = key;
    }
}

Merge Sort

Merge Sort is a Divide and Conquer algorithm. It divides the input array into two halves, calls itself for the two halves, and then merges the two sorted halves. The merge() function is used for merging two halves. The merge(arr, l, m, r) is a key process that assumes that arr[l..m] and arr[m + 1..r] are sorted and merges the two sorted sub-arrays into one. See the following C implementation for details.

Time Complexity

Best Case is O(n x log(n))

Worst Case is O(n x log(n))

Pseudocode

begin MergeSort(list, left, right):
    if left > right 
        return
    mid = (left+right)/2
    mergeSort(list, left, mid)
    mergeSort(list, mid+1, right)
    merge(arr, list, mid, right)
end MergeSort

begin merge(list, left, right)
  mid = (left + right) / 2
  L[left ... mid]
  R[mid + 1 ... right]
  i = 0, j = 0, k = left
  while i < len(L) and j < len(R)
      if L[i] <= R[j]
         list[k] = L[i]
         k++, i++
      else
         list[k] = R[j]
         k++, j++
  while i < len(L) do
      list[k] = L[i]
      k++, i++
  while(j < len(R) do
      list[k] = R[j]
      k++, j++

end merge

Code

C++

void Merge(int l, int m, int r, vector < int >& nums){
    int sz_1 = m - l + 1, sz_2 = r - m;
    vector < int > left(sz_1), right(sz_2);
    for(int i = 0; i < sz_1; i++) left[i] = nums[l + i];
    for(int i = 0; i < sz_2; i++) right[i] = nums[m + 1 + i];
    int i = 0, j = 0, k = l;
    while(i < sz_1 && j < sz_2)
        nums[k++] = (left[i] <= right[j] ? left[i++] : right[j++]);
    while(i < sz_1) nums[k++] = left[i++];
    while(j < sz_2) nums[k++] = right[j++];
}

void Merge_Sort(vector < int >& nums, int l, int r){
    if(l >= r) return;
    int m = l + (r - l) / 2;
    Merge_Sort(nums, l, m);
    Merge_Sort(nums, m + 1, r);
    Merge(l, m, r, nums);
}

C

void merge(int* arr, int l, int m, int r){
    int i, j, k;
    int n1 = m - l + 1, n2 = r - m;
    int L[n1], R[n2];
    for (i = 0; i < n1; i++)
        L[i] = arr[l + i];
    for (j = 0; j < n2; j++)
        R[j] = arr[m + 1 + j];
    i = 0, j = 0, k = l; // Initial index of merged subarray
    while (i < n1 && j < n2) {
        if (L[i] <= R[j]) 
            arr[k++] = L[i++];
        else 
            arr[k++] = R[j++];
    }
    while (i < n1)
        arr[k++] = L[i++];
    while (j < n2)
        arr[k++] = R[j++];
}

void mergeSort(int* arr, int l, int r){
    if (l < r) {
        int m = l + (r - l) / 2;
        mergeSort(arr, l, m);
        mergeSort(arr, m + 1, r);
        merge(arr, l, m, r);
    }
}```

#### Python

```Python
def merge(data, start, mid, end):
    L = data[start : mid + 1]
    R = data[mid + 1: end + 1]
    L_idx, R_idx, S_idx = 0, 0, start
    while L_idx < len(L) and R_idx < len(R):
        if L[L_idx] <= R[R_idx]:
            data[S_idx] = L[L_idx]
            L_idx += 1
        else:
            data[S_idx] = R[R_idx]
            R_idx += 1
        S_idx += 1
    while L_idx < len(L):
        data[S_idx] = L[L_idx]
        L_idx += 1; S_idx += 1

    while R_idx < len(R):
        data[S_idx] = R[R_idx]
        R_idx += 1; S_idx += 1


def merge_sort(data, start, end):
    if start < end:
        mid = int((start + end) / 2)
        merge_sort(data, start, mid)
        merge_sort(data, mid + 1, end)
        merge(data, start, mid, end)

Java

void merge(int arr[], int l, int m, int r){
    int n1 = m - l + 1;
    int n2 = r - m;
    int L[] = new int[n1];
    int R[] = new int[n2];
    for (int i = 0; i < n1; ++i)
        L[i] = arr[l + i];
    for (int j = 0; j < n2; ++j)
        R[j] = arr[m + 1 + j];
    int i = 0, j = 0;
    int k = l;
    while (i < n1 && j < n2) {
        if (L[i] <= R[j]) {
            arr[k] = L[i];
            i++;
        }
        else {
            arr[k] = R[j];
            j++;
        }
        k++;
    }
    while (i < n1) {
        arr[k] = L[i];
        i++;
        k++;
    }
    while (j < n2) {
        arr[k] = R[j];
        j++;
        k++;
    }
}

void sort(int arr[], int l, int r){
    if (l < r) {
        int m =l+ (r-l)/2;
        sort(arr, l, m);
        sort(arr, m + 1, r);
        merge(arr, l, m, r);
    }
}

JavaScript

const merge = (arr, l, m, r) => {
    let n1 = m - l + 1;
    let n2 = r - m;
    let L = new Array(n1);
    let R = new Array(n2);

    // Copy left half to L array
    for(let i = 0; i < n1; i++)
        L[i] = arr[l + i];

    // Copy right half to R array
    for(let j = 0; j < n2; j++)
        R[j] = arr[m + 1 + j];

    let i = 0, j = 0;
    let k = l;

    // Overwrite elements in original array in the right order 
    while(i < n1 && j < n2) {
        if(L[i] <= R[j]) {
            arr[k] = L[i];
            i++;
        } else {
            arr[k] = R[j];
            j++;
        }
        k++;
    }

    // Copy remaining elements in L, if exist
    while(i < n1) {
        arr[k] = L[i];
        i++;
        k++;
    }

    // Copy remaining elements in R, if exist
    while (j < n2) {
        arr[k] = R[j];
        j++;
        k++;
    }
}

const mergeSort = (arr, l, r) => {
    if (l < r) {
        let m = l + Math.floor((r-l) / 2);
        mergeSort(arr, l, m);
        mergeSort(arr, m + 1, r);
        merge(arr, l, m, r);
    }
}

Quick Sort

QuickSort is a Divide and Conquer algorithm. It picks an element as pivot and partitions the given array around the picked pivot. There are many different versions of quickSort that pick pivot in different ways.

  1. Always pick first element as pivot.
  2. Always pick last element as pivot (implemented below)
  3. Pick a random element as pivot.
  4. Pick median as pivot.

Time Complexity

Best Case is O(n x log(n))

Worst Case is O(n2)

Pseudocode

begin quickSort(arr[], low, high)
    if low < high do
        pi = partition(arr, low, high)
        quickSort(arr, low, pi - 1) 
        quickSort(arr, pi + 1, high)
end quickSort
begin partition (arr[], low, high)
    pivot = arr[high] 
    i = low - 1
    for j from low to high- 1
        if arr[j] < pivot
            i++;    
            swap arr[i] and arr[j]
    swap arr[i + 1] and arr[high])
    return (i + 1)
}
end partition

Code

C++

int Partition(vector < int >& nums, int l, int r){
    int pivot = nums[r], i = l;
    for(int j = l; j < r; j++){
        if(nums[j] <= pivot)
            swap(nums[i++], nums[j]);
    }
    swap(nums[i], nums[r]);
    return i;
}

void Quick_Sort(vector < int >& nums, int l, int r){
    if(l >= r) return;
    int pivot = Partition(nums, l, r);
    Quick_Sort(nums, l, pivot - 1);
    Quick_Sort(nums, pivot + 1, r);
}

C

void swap(int* a, int* b){
    int t = *a;
    *a = *b, *b = t;
}

int partition (int* arr, int low, int high){
    int pivot = arr[high];     
    int i = (low - 1);
    for (int j = low; j <= high - 1; j++){
        if (arr[j] < pivot){
            i++;
            swap(&arr[i], &arr[j]);
        }
    }
    swap(&arr[i + 1], &arr[high]);
    return (i + 1);
}

void quickSort(int* arr, int low, int high){
    if (low < high){
        int pi = partition(arr, low, high);
        quickSort(arr, low, pi - 1);
        quickSort(arr, pi + 1, high);
    }
}

Python

def partition(data, start, end):
    i = start + 1
    pivot = data[start]

    for j in range(start + 1, end + 1):
        if data[j] < pivot:
            data[i], data[j] = data[j], data[i]
            i += 1
    data[start], data[i - 1] = data[i - 1], data[start]
    return i - 1

def quick_sort(data, start, end):
    if start < end:
        pivot_position = partition(data, start, end)
        quick_sort(data, start, pivot_position - 1)
        quick_sort(data, pivot_position + 1, end)

Java

int partition (int a[], int start, int end)  {  
    int pivot = a[end];  
    int i = (start - 1);  
    for (int j = start; j <= end - 1; j++)  {  
        if (a[j] < pivot){  
            i++;  
            int t = a[i];  
            a[i] = a[j];  
            a[j] = t;  
        }  
    }  
    int t = a[i + 1];  
    a[i + 1] = a[end];  
    a[end] = t;  
    return (i + 1);  
}  
    
void quick_sort(int a[], int start, int end){  
    if (start < end)  {  
        int p = partition(a, start, end);  
        quick_sort(a, start, p - 1);  
        quick_sort(a, p + 1, end);  
    }
}  

JavaScript

const partition = (a, start, end) => {  
    let pivot = a[end];  
    let i = (start - 1);  
    
    for(let j = start; j < end; j++)  {  
        if (a[j] < pivot){  
            i++;  
            [a[i], a[j]] = [a[j], a[i]];
        }  
    }
    
    [a[i + 1], a[end]] = [a[end], a[i + 1]];
    return (i + 1);  
}  
    
const quickSort = (a, start, end) => {  
    if(start < end) {  
        let partitionIndex = partition(a, start, end);  
        quickSort(a, start, partitionIndex - 1);  
        quickSort(a, partitionIndex + 1, end);  
    }
}  

Counting Sort

Counting sort is a sorting technique based on keys between a specific range. It works by counting the number of objects having distinct key values (kind of hashing). Then doing some arithmetic to calculate the position of each object in the output sequence.

Time Complexity

Best Case is O(n + k)

Worst Case is O(n + k)

Pseudocode

begin CountingSort(A)
  for i = 0 to k do
  c[i] = 0
  for j = 0 to n do
  c[A[j]] = c[A[j]] + 1
  for i = 1 to k do
  c[i] = c[i] + c[i-1]
  for j = n - 1 downto 0 do
  B[ c[A[j]]-1 ] = A[j]
  c[A[j]] = c[A[j]] - 1
end CountingSort

Code

C++

void countSort(vector < int >& arr){
    int max = *max_element(arr.begin(), arr.end());
    int min = *min_element(arr.begin(), arr.end());
    int range = max - min + 1;
    vector < int > count(range), output(arr.size());
    for (int i = 0; i < arr.size(); i++)
        count[arr[i] - min]++;
    for (int i = 1; i < count.size(); i++)
        count[i] += count[i - 1];
    for (int i = arr.size() - 1; i >= 0; i--) {
        output[count[arr[i] - min] - 1] = arr[i];
        count[arr[i] - min]--;
    }
    for (int i = 0; i < arr.size(); i++)
        arr[i] = output[i];
}

C

void countSort(int* arr, int n){
    int max = INT_MIN, min = INT_MAX;
    int range = max - min + 1;
    int count[range], output[n];
    for (int i = 0; i < n; i++)
        count[arr[i] - min]++;
    for (int i = 1; i < range; i++)
        count[i] += count[i - 1];
    for (int i = n - 1; i >= 0; i--) {
        output[count[arr[i] - min] - 1] = arr[i];
        count[arr[i] - min]--;
    }
    for (int i = 0; i < n; i++)
        arr[i] = output[i];
}

Python

def counting_sort(data):
    n = max(data) + 1
    count = [0] * n
    for item in data:
        count[item] += 1
    k = 0
    for i in range(n):
        for j in range(count[i]):
            data[k] = i
            k += 1

Java

static void countSort(int[] arr){
  int max = Arrays.stream(arr).max().getAsInt();
  int min = Arrays.stream(arr).min().getAsInt();
  int range = max - min + 1;
  int count[] = new int[range];
  int output[] = new int[arr.length];
  for (int i = 0; i < arr.length; i++)
    count[arr[i] - min]++;
  for (int i = 1; i < count.length; i++)
    count[i] += count[i - 1];
  for (int i = arr.length - 1; i >= 0; i--){
    output[count[arr[i] - min] - 1] = arr[i];
    count[arr[i] - min]--;
  }
  for (int i = 0; i < arr.length; i++)
    arr[i] = output[i];
}

JavaScript

const countSort = (arr) => {
  const max = Math.max(...arr);
  const min = Math.min(...arr);

  const range = max - min + 1;
  
  const count = new Array(range);
  const output = new Array(arr.length);

  for (let i = min; i <= max; i++)
    count[i] = 0;
  
  for (let i = 0; i < arr.length; i++)
    count[arr[i]] += 1;
  
  let j = 0;

  for (let i = min; i <= max; i++) {
    while (count[i] > 0) {
        arr[j] = i;
        j++;
        count[i]--;
    }
  }
}

Heap Sort

Heap sort is a comparison-based sorting technique based on Binary Heap data structure. It is similar to selection sort where we first find the minimum element and place the minimum element at the beginning. We repeat the same process for the remaining elements. Heap Sort Algorithm for sorting in increasing order:

  1. Build a max heap from the input data.
  2. At this point, the largest item is stored at the root of the heap. Replace it with the last item of the heap followed by reducing the size of heap by 1. Finally, heapify the root of the tree.
  3. Repeat step 2 while the size of the heap is greater than 1.

Time Complexity

Best Case is O(n x log(n))

Worst Case is O(n x log(n))

Pseudocode

begin Heapify(A as array, n as int, i as int)
    max = i
    leftchild = 2i + 1
    rightchild = 2i + 2
    if (leftchild <= n) and (A[i] < A[leftchild])
        max = leftchild
    else 
        max = i
    if (rightchild <= n) and (A[max]  > A[rightchild])
        max = rightchild
    if (max != i)
        swap(A[i], A[max])
        Heapify(A, n, max)
end Heapify

Heapsort(A as array)
   n = length(A)
   for i = n/2 downto 1   
     Heapify(A, n ,i)
   
   for i = n downto 2
     exchange A[1] with A[i]
     A.heapsize = A.heapsize - 1
     Heapify(A, i, 0)
end Heapsort

Code

C++

void heapify(vector < int >& arr, int i){
    int largest = i, l = 2 * i + 1, r = 2 * i + 2, n = arr.size();
    if (l < n && arr[l] > arr[largest]) largest = l;
    if (r < n && arr[r] > arr[largest]) largest = r;
    if (largest != i) {
        swap(arr[i], arr[largest]);
        heapify(arr, largest);
    }
}

void heapSort(vector < int >& arr){
    int n = arr.size();
    for (int i = n / 2 - 1; i >= 0; i--)
        heapify(arr, i);
    for (int i = n - 1; i > 0; i--) {
        swap(arr[0], arr[i]);
        heapify(arr, 0);
    }
}

C

void heapify(int* arr, int n, int i){
    int largest = i; 
    int l = 2 * i + 1;
    int r = 2 * i + 2;    
    if (l < n && arr[l] > arr[largest])
        largest = l;
    if (r < n && arr[r] > arr[largest])
        largest = r;
    if (largest != i) {
        swap(arr[i], arr[largest]);
        heapify(arr, n, largest);
    }
}

void heapSort(int* arr, int n){
    for (int i = n / 2 - 1; i >= 0; i--)
        heapify(arr, n, i);
    for (int i = n - 1; i > 0; i--) {
        swap(arr[0], arr[i]);
        heapify(arr, i, 0);
    }
}

Python

def heapify(data, n, i):
    largest, left, right = i, 2 * i + 1, 2 * i + 2
    if left < n and data[i] < data[left]:
        largest = left
    if right < n and data[largest] < data[right]:
        largest = right
    if largest != i:
        data[i], data[largest] = data[largest], data[i]
        heapify(data, n, largest)

def heap_sort(data):
    n = len(data)
    for i in range(n - 1, -1, -1):
        heapify(data, n, i)
    for i in range(n - 1, 0, -1):
        data[i], data[0] = data[0], data[i]
        heapify(data, i, 0)

Java

public void heap_sort(int arr[]){
   int n = arr.length;
   for (int i = n / 2 - 1; i >= 0; i--)
      heapify(arr, n, i);
   for (int i = n - 1; i > 0; i--) {
      int temp = arr[0];
      arr[0] = arr[i];
      arr[i] = temp;
      heapify(arr, i, 0);
   }
}
public void heapify(int arr[], int n, int i){
   int largest = i, l = 2 * i + 1, r = 2 * i + 2;
   if (l < n && arr[l] > arr[largest])
      largest = l;
   if (r < n && arr[r] > arr[largest])
      largest = r;
   if (largest != i) {
      int swap = arr[i];
      arr[i] = arr[largest];
      arr[largest] = swap;
      heapify(arr, n, largest);
   }
}

JavaScript

const heapSort = (arr) => {
    const n = arr.length;

    // Convert array to a heap
    for (let i = Math.floor(n / 2) - 1; i >= 0; i--)
        heapify(arr, n, i);

    // Iteratively pick the root of the heap and add it to the end of the array
    for (let i = n - 1; i > 0; i--) {
        [arr[0], arr[i]] = [arr[i], arr[0]] 
        heapify(arr, i, 0);
    }
}

const heapify = (arr, n, i) => {
    let largest = i;
    let l = 2 * i + 1;
    let r = 2 * i + 2;

    if (l < n && arr[l] > arr[largest]) largest = l;

    if (r < n && arr[r] > arr[largest]) largest = r;

    if (largest != i) {
        [arr[i], arr[largest]] = [arr[largest], arr[i]];
        heapify(arr, n, largest);
    }
}

About

All information about sorting algorithm you need and you can visualize the code tracer

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published