-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathPrint_Template.cpp
executable file
·3632 lines (2910 loc) · 95.8 KB
/
Print_Template.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#include <bits/stdc++.h>
using namespace std;
#define cin_2d(vec, n, m) for(int i = 0; i < n; i++) for(int j = 0; j < m && cin >> vec[i][j]; j++);
#define cout_2d(vec, n, m) for(int i = 0; i < n; i++, cout << "\n") for(int j = 0; j < m && cout << vec[i][j] << " "; j++);
#define fixed(n) fixed << setprecision(n)
#define ceil(n, m) (((n) / (m)) + ((n) % (m) ? 1 : 0))
#define fill(vec, value) memset(vec, value, sizeof(vec));
#define mul_mod(a, b, m) (((a % m) * (b % m)) % m)
#define add_mod(a, b, m) (((a % m) + (b % m)) % m)
#define all(vec) vec.begin(), vec.end()
#define rall(vec) vec.rbegin(), vec.rend()
#define sz(x) int(x.size())
#define debug(x) cout << #x << ": " << (x) << "\n";
#define fi first
#define se second
#define ll long long
#define ull unsigned long long
#define Mod 1'000'000'007
#define OO 2'000'000'000
#define EPS 1e-9
#define PI acos(-1)
template < typename T = int > using Pair = pair < T, T >;
vector < string > RET = {"NO", "YES"};
template < typename T = int > istream& operator >> (istream &in, vector < T > &v) {
for (auto &x : v) in >> x;
return in;
}
template < typename T = int > ostream& operator << (ostream &out, const vector < T > &v) {
for (const T &x : v) out << x << ' ';
return out;
}
void FAST_IO(){
ios_base::sync_with_stdio(false), cin.tie(nullptr), cout.tie(nullptr);
#ifndef ONLINE_JUDGE
freopen("input.txt", "r", stdin);
freopen("output.txt", "w", stdout);
#endif
}
// -------------------------- Trie Binary -----------------------------
template < typename T = int, int LOG = 30 > struct Trie {
struct Node {
Node* child[2];
int freq;
Node(){
memset(child, 0, sizeof(child));
freq = 0;
}
};
Node* root;
Trie(){
root = new Node;
}
void insert(const T& x){
Node* curr = root;
for(int bit = LOG; bit >= 0; --bit){
int bit_val = (x >> bit) & 1;
if(!curr -> child[bit_val])
curr -> child[bit_val] = new Node;
curr = curr -> child[bit_val];
++curr -> freq;
}
}
void erase(const T& x, int bit, Node* curr){
if(bit < 0) return;
int bit_val = (x >> bit) & 1;
erase(x, bit - 1, curr -> child[bit_val]);
if(--curr -> child[bit_val] -> freq == 0){
delete curr -> child[bit_val];
curr -> child[bit_val] = nullptr;
}
}
bool search(const T& x){
Node* curr = root;
for(int bit = LOG; bit >= 0; --bit){
int bit_val = (x >> bit) & 1;
if(!curr -> child[bit_val])
return false;
curr = curr -> child[bit_val];
}
return true;
}
void erase(const T& x){
if(search(x))
erase(x, LOG, root);
}
};
// -------------------------- Trie -----------------------------
template < int Mode = 0 > struct Trie {
// Mode [lowercase, uppercase, digits]
static constexpr int sz[4] = {26, 26, 10};
struct Node {
Node* child[sz[Mode]];
bool is_word;
int freq;
Node(){
memset(child, 0, sizeof(child));
is_word = false;
freq = 0;
}
};
Node* root;
char DEFAULT;
Trie(){
root = new Node;
DEFAULT = "aA0"[Mode];
}
void insert(const string& word){
Node* curr = root;
for(auto& c : word){
if(!curr -> child[c - DEFAULT])
curr -> child[c - DEFAULT] = new Node;
curr = curr -> child[c - DEFAULT];
curr -> freq++;
}
curr -> is_word = true;
}
void erase(const string& word, int idx, Node* curr){
if(idx == sz(word)) return void(curr -> is_word = curr -> freq > 1);
erase(word, idx + 1, curr -> child[word[idx] - DEFAULT]);
if(--curr -> child[word[idx] - DEFAULT] -> freq == 0){
delete curr -> child[word[idx] - DEFAULT];
curr -> child[word[idx] - DEFAULT] = nullptr;
}
}
bool search(const string& word){
Node* curr = root;
for(auto& c : word){
if(!curr -> child[c - DEFAULT]) return false;
curr = curr -> child[c - DEFAULT];
}
return curr -> is_word;
}
void erase(const string& word){
if(search(word))
erase(word, 0, root);
}
bool is_prefix(const string& word){
Node* curr = root;
for(auto& c : word){
if(!curr -> child[c - DEFAULT]) return false;
curr = curr -> child[c - DEFAULT];
}
return true;
}
};
// -------------------------- PST -----------------------------
template < typename T = int , int Base = 0 > struct PST {
struct Node {
T val, prefix;
Node *left, *right;
Node(T _val = 0) {
this -> val = _val;
this -> prefix = max(0ll, _val);
left = right = this;
}
Node(Node* node, Node* l = new Node, Node* r = new Node) {
val = node -> val;
prefix = node -> prefix;
left = l;
right = r;
}
};
vector < Node* > roots;
T N, Lx, Rx;
PST(int n = 0, T lx = -1e9, T rx = 1e9) : N(n), Lx(lx), Rx(rx) {
roots = vector < Node* > (n + 5, new Node);
}
Node* build(const vector < T >& nums, T l, T r){
if(l == r) return new Node(nums[l - !Base]);
T mx = l + (r - l) / 2;
Node* L = build(nums, l, mx);
Node* R = build(nums, mx + 1, r);
return new Node(operation(L, R), L, R);
}
void build(const vector < T >& nums){
roots[0] = build(nums, Lx, Rx);
}
Node* operation(Node* a, Node* b){
Node* Merged = new Node();
Merged -> val = a -> val + b -> val;
Merged -> prefix = max(a -> prefix, a -> val + b -> prefix);
return Merged;
}
Node* update(Node* root, int idx, T val, T lx, T rx){
if(idx < lx || idx > rx) return root;
if(lx == rx) return new Node(val);
T mx = lx + (rx - lx) / 2;
Node* L = update(root -> left, idx, val, lx, mx);
Node* R = update(root -> right, idx, val, mx + 1, rx);
return new Node(operation(L, R), L, R);
}
void insert(int idx, T val, int curr_time, int prev_time){
roots[curr_time] = update(roots[prev_time], idx, val, Lx, Rx);
}
void update(int idx, T val, int curr_time){
roots[curr_time] = update(roots[curr_time], idx, val, Lx, Rx);
}
Node* query(Node* root, int l, int r, T lx, T rx){
if (root == nullptr) return new Node(); // Base case for null pointer
if (lx > r || l > rx) return new Node(); // Base case for out-of-range interval
if(lx >= l && rx <= r) return root;
int mx = (lx + rx) / 2;
Node* L = query(root -> left, l, r, lx, mx);
Node* R = query(root -> right, l, r, mx + 1, rx);
return operation(L, R);
}
T query(int l, int r, int time){
return query(roots[time], l, r, Lx, Rx) -> prefix;
}
T get(int time, int idx){
return query(idx, idx, time) -> prefix;
}
};
// -------------------------- Seive -----------------------------
template < typename T = int > struct Seive {
vector < bool > is_prime;
vector < T > primes;
Seive(int n){
is_prime.assign(n + 1, true);
is_prime[0] = is_prime[1] = false;
for(ll i = 2; i <= sqrt(n); i++)
if(is_prime[i])
for(ll j = i * i; j <= n; j += i) is_prime[j] = false;
}
// Build vector with prime numbers
void get_primes(int n){
for(int i = 1; i <= n; i++)
if(is_prime[i])
primes.push_back(i);
}
// Print the prime numbers
void print_primes(){
for(auto& p : primes)
cout << p << " ";
cout << "\n";
}
};
// -------------------------- Segment Tree -----------------------------
template < typename T = int , int Base = 0 > struct Segment_Tree {
struct Node {
T val;
Node(T V = 0) : val(V) {}
Node operator = (const T rhs) {
val = rhs;
return *this;
}
};
int size;
Node DEFAULT;
vector < Node > tree;
#define LEFT (idx << 1)
#define RIGHT ((idx << 1) | 1)
Segment_Tree(int n = 0){
size = 1, DEFAULT = 0;
while(size < n) size *= 2;
tree = vector < Node > (2 * size, DEFAULT);
}
Segment_Tree(int n, const vector < T >& nums){
size = 1, DEFAULT = 0;
while(size < n) size *= 2;
tree = vector < Node > (2 * size, DEFAULT);
build(nums);
}
// Main operation to do
Node operation(const Node& a, const Node& b){
return a.val + b.val;
}
// If Base is 1 so the array is 1-based else the array is 0-based
void build(const vector < T >& nums, int idx, int lx, int rx){
if(Base ? lx >= sz(nums) : lx > sz(nums)) return;
if(rx == lx) tree[idx] = nums[lx - !Base];
else {
int mx = (rx + lx) / 2;
build(nums, LEFT, lx, mx);
build(nums, RIGHT, mx + 1, rx);
tree[idx] = operation(tree[LEFT], tree[RIGHT]);
}
}
void build(const vector < T >& nums){
build(nums, 1, 1, size);
}
void update(int index, T v, int idx, int lx, int rx){
if(rx == lx) tree[idx] = v;
else {
int mx = (rx + lx) / 2;
if(index <= mx) update(index, v, LEFT, lx, mx);
else update(index, v, RIGHT, mx + 1, rx);
tree[idx] = operation(tree[LEFT], tree[RIGHT]);
}
}
void update(const int index, const T v){
update(index, v, 1, 1, size);
}
Node query(int l, int r, int idx, int lx, int rx){
if(lx > r || l > rx) return DEFAULT;
if(lx >= l && rx <= r) return tree[idx];
int mx = (lx + rx) / 2;
return operation(query(l, r, LEFT, lx, mx), query(l, r, RIGHT, mx + 1, rx));
}
Node query_Node(const int l, const int r){
return query(l, r, 1, 1, size);
}
T query(const int l, const int r){
return query_Node(l, r).val;
}
T get(const int idx){
return query_Node(idx, idx).val;
}
friend ostream& operator << (ostream &out, const Node &node) {
out << node.val << ' ';
return out;
}
// remove macro LEFT and RIGHT
#undef LEFT
#undef RIGHT
};
// -------------------------- Lazy Propagation -----------------------------
template < typename T = int, const int Base = 0 > struct Lazy_Propagation {
struct Node {
T val, update;
bool is_lazy;
Node(T V = 0) : val(V), update(0), is_lazy(false) {}
Node operator = (const T &other){
this -> val = other;
return *this;
}
};
int size;
T query_default, init_default;
vector < Node > Tree;
#define LEFT (idx << 1)
#define RIGHT ((idx << 1) | 1)
// initial Lazy and Tree
void intial(int n){
size = 1;
query_default = 0, init_default = 0;
while(size <= n) size *= 2;
Tree = vector < Node > (2 * size, Node(init_default));
}
Lazy_Propagation(int n){
intial(n);
}
Lazy_Propagation(int n, const vector < T > &v){
intial(n);
build(v);
}
// the function that will be used to update the Tree
T Lazy_operation(T a, T b){
return a + b;
}
// the function that will be used to query on the Tree
Node Tree_operation(const Node& a, const Node& b){
return Node(a.val + b.val);
}
// push Lazy value to children in Lazy
void propagate(int idx, int lx, int rx){
if(!Tree[idx].is_lazy) return;
Tree[idx].val = Lazy_operation(Tree[idx].val, (rx - lx + 1) * Tree[idx].update);
if(lx != rx){
Tree[LEFT].update = Lazy_operation(Tree[LEFT].update, Tree[idx].update);
Tree[RIGHT].update = Lazy_operation(Tree[RIGHT].update, Tree[idx].update);
Tree[LEFT].is_lazy = Tree[RIGHT].is_lazy = true;
}
Tree[idx].update = init_default, Tree[idx].is_lazy = false;
}
void update_lazy(int idx, T v){
Tree[idx].update = Lazy_operation(Tree[idx].update, v);
Tree[idx].is_lazy = true;
}
// build the Tree with given vector
void build(const vector < T >& nums, int idx, int lx, int rx){
propagate(idx, lx, rx);
if(Base ? lx >= sz(nums) : lx > sz(nums)) return;
if(rx == lx) Tree[idx] = nums[lx - !Base];
else {
int mx = (rx + lx) / 2;
build(nums, LEFT, lx, mx), build(nums, RIGHT, mx + 1, rx);
propagate(LEFT, lx, mx), propagate(RIGHT, mx + 1, rx);
Tree[idx] = Tree_operation(Tree[LEFT], Tree[RIGHT]);
}
}
// build the Tree with initial value
void build(const T initial_value, int idx, int lx, int rx){
propagate(idx, lx, rx);
if(rx == lx) Tree[idx] = initial_value;
else {
int mx = (rx + lx) / 2;
build(initial_value, LEFT, lx, mx), build(initial_value, RIGHT, mx + 1, rx);
propagate(LEFT, lx, mx), propagate(RIGHT, mx + 1, rx);
Tree[idx] = Tree_operation(Tree[LEFT], Tree[RIGHT]);
}
}
// build the Tree with initial value
void build(const T initial_value){
build(initial_value, 1, 1, size);
}
// the vector should be 1-based also the Tree is 1-based
void build(const vector < T >& nums){
build(nums, 1, 1, size);
}
// update the value of the Tree in range [l, r] with value v
void update(int l, int r, T v, int idx, int lx, int rx){
propagate(idx, lx, rx);
if(lx >= l && rx <= r) return update_lazy(idx, v);
if(lx > r || rx < l) return;
int mx = (lx + rx) / 2;
update(l, r, v, LEFT, lx, mx), update(l, r, v, RIGHT, mx + 1, rx);
propagate(LEFT, lx, mx), propagate(RIGHT, mx + 1, rx);
Tree[idx] = Tree_operation(Tree[LEFT], Tree[RIGHT]);
}
// update the value in one index
void update(int i, T v){
update(i, i, v, 1, 1, size);
}
// update the value of the Tree in range [l, r] with value v
void update(int l, int r, T v){
update(l, r, v, 1, 1, size);
}
// query the value of the Tree in range [l, r]
Node query(int l, int r, int idx, int lx, int rx){
propagate(idx, lx, rx);
if(lx >= l && rx <= r) return Tree[idx];
if(lx > r || rx < l) return query_default;
int mx = (rx + lx) / 2;
propagate(LEFT, lx, mx), propagate(RIGHT, mx + 1, rx);
return Tree_operation(query(l, r, LEFT, lx, mx), query(l, r, RIGHT, mx + 1, rx));
}
// query the value of the Tree in range [l, r]
T query(int l, int r){
return query(l, r, 1, 1, size).val;
}
// query the value of the Tree in index i
T query(int i){
return query(i, i, 1, 1, size).val;
}
// print the Tree
void print(int idx, int lx, int rx){
propagate(idx, lx, rx);
if(lx == rx) cout << Tree[idx].val << ' ';
else {
int mx = (lx + rx) / 2;
print(LEFT, lx, mx), print(RIGHT, mx + 1, rx);
}
}
// print the Tree
void print(){
print(1, 1, size);
cout << '\n';
}
// remove the defined macros
#undef LEFT
#undef RIGHT
};
// -------------------------- Ternary Search -----------------------------
ll F(ll m){
// to do function to compare the two halves in the range [L, R]
return m;
}
ll Ternary_Search(ll L, ll R){
while(R - L >= 10){
ll m1 = L + (R - L) / 3, m2 = R - (R - L) / 3;
(F(m1) < F(m1) ? R = m2 : L = m1);
}
ll ans = LINF;
for(ll i = L; i <= R; i++)
ans = min(ans, F(i));
return ans;
}
double F(double m){
// to do function to compare the two halves in the range [L, R]
return m;
}
double Ternary_Search(double L, double R){
double ans = LINF;
while(R - L >= EPS){
double m1 = L + (R - L) / 3, m2 = R - (R - L) / 3;
double f1 = F(m1), f2 = F(m1);
(f1 < f2 ? R = m2 : L = m1);
ans = min({ans, f1, f2});
}
return ans;
}
// -------------------------- Prefix Sum 2D -----------------------------
template < typename T = int > struct Prefix_2D {
int n, m;
vector < vector < T > > prefix;
Prefix_2D(int N = 0, int M = 0){
n = N, m = M;
prefix.assign(n + 5, vector < T > (m + 5));
}
// Get the sum of the number in the rectangle between x1, y1, x2, y2
T Get_Query(int x1, int y1, int x2, int y2){
if(x1 > x2) swap(x1, x2);
if(y1 > y2) swap(y1, y2);
return prefix[x2][y2] - prefix[x1 - 1][y2] - prefix[x2][y1 - 1] + prefix[x1 - 1][y1 - 1];
}
void Build_Prefix(vector < vector < T > >& matrix){
for(int i = 1; i <= n; i++)
for(int j = 1; j <= m; j++)
prefix[i][j] = matrix[i - 1][j - 1] + prefix[i][j - 1] + prefix[i - 1][j] - prefix[i - 1][j - 1];
}
void Print_Prefix(){
for(int i = 1; i <= n; i++, cout << '\n')
for(int j = 1; j <= m && cout << prefix[i][j] << ' '; j++);
}
};
// -------------------------- Partial Sum 2D -----------------------------
template < typename T = int > struct Partial_2D {
vector < vector < T > > partial;
int n, m;
Partial_2D(int N, int M){
n = N, m = M;
partial.assign(n + 5, vector < T > (m + 5));
}
void build_partial(int queries){
while(queries--){
int x1, y1, x2, y2, k = 1;
cin >> x1 >> y1 >> x2 >> y2;
if(x1 > x2) swap(x1, x2);
if(y1 > y2) swap(y1, y2);
partial[x2][y2] += k, partial[x2][y1 - 1] -= k;
partial[x1 - 1][y2] -= k, partial[x1 - 1][y1 - 1] += k;
}
for(int i = n; i >= 0; i--)
for(int j = m; j >= 0; j--)
partial[i][j] += partial[i][j + 1];
for(int i = n; i >= 0; i--)
for(int j = m; j >= 0; j--)
partial[i][j] += partial[i + 1][j];
}
T get(int x, int y){
return partial[x][y];
}
void print(){
for(int i = 1; i <= n; i++, cout << "\n")
for(int j = 1; j <= m && cout << partial[i][j] << " "; j++);
}
};
// -------------------------- Matrix Power -----------------------------
template < typename T = int > struct Matrix {
// The matrix
int N;
vector < vector < T > > Mat;
// Constructor to fill the matrix with this value
Matrix(int n = 0, T val = 0) {
N = n;
Mat.assign(N, vector < T > (N, val));
}
// Constructor to make matrix with this 2D Vector
Matrix(const vector < vector < T > > & b){
N = b.size();
Mat = b;
}
// Overloaded the = operator
Matrix& operator = (const Matrix& b){
Mat = b.Mat;
N = b.Mat.size();
return *this;
}
// Overloaded the = operator
Matrix& operator = (const vector < vector < T > > & b){
Mat = b;
N = b.size();
return *this;
}
// Overload the [][] operator
vector < T >& operator[](T index) {
return Mat[index];
}
// Overload the [][] operator
const vector < T >& operator[](T index) const {
return Mat[index];
}
};
// Get Transition matrix
template < typename T = long long > Matrix < T > GetTrans(){
vector < vector < T > > Trans = {
{0, 1},
{1, 1}
};
return Matrix < T > (Trans);
}
// Get the identity matrix
template < typename T = long long > Matrix < T > GetIdentity(const int N){
vector < vector < T > > Identity(N, vector < T > (N));
for(int i = 0; i < N; i++)
Identity[i][i] = 1;
return Matrix < T > (Identity);
}
// Get the zero matrix
template < typename T = long long > Matrix < T > GetZero(const int N){
vector < vector < T > > Zero(N, vector < T > (N));
return Matrix < T > (Zero);
}
// Overload the * operator
template < typename T = long long > Matrix < T > operator * (const Matrix < T >& a, const Matrix < T >& b){
int N = a.N;
Matrix res = GetZero(N);
for(int i = 0; i < N; i++)
for(int j = 0; j < N; j++)
for(int k = 0; k < N; k++)
res[i][j] = add_mod(res[i][j], mul_mod(a[i][k], b[k][j], Mod), Mod);
return res;
}
// Overload the *= operator
template < typename T = long long > Matrix < T > operator *= (Matrix < T >& a, const Matrix < T >& b){
a = a * b;
return a;
}
// Overload the ^ operator
template < typename T = long long > Matrix < T > Power(Matrix < T >& b, ll e){
Matrix < T > Trans = GetTrans();
while(e){
if(e & 1) b *= Trans;
Trans *= Trans;
e >>= 1;
}
return b;
}
// Get the k-th term
template < typename T = long long > T k_th(T k, int N){
// base case to change
if(N <= 0) return 0;
if(N <= 1) return 1;
Matrix < T > matrix = GetIdentity(N);
matrix = Power(matrix, k + 1);
return matrix[0][0];
}
// -------------------------- Binary Search Tree -----------------------------
struct BST {
int data;
BST *left, *right;
BST(int data = 0){
this -> data = data;
left = right = nullptr;
}
// Insert New node
BST* Insert(BST* root, int val){
if(!root) return new BST(val);
if(val > root -> data)
root -> right = Insert(root -> right, val);
else
root -> left = Insert(root -> left, val);
return root;
}
// Inorder Traverse (LRR)
void Inorder(BST* root){
if(!root) return;
Inorder(root -> left);
cout << root -> data << " ";
Inorder(root -> right);
}
// Preorde Traverse (RLR)
void Preorder(BST* root){
if(!root) return;
cout << root -> data << " ";
Preorder(root -> left);
Preorder(root -> right);
}
// Postorder Traverse (LRR)
void Postorder(BST* root){
if(!root) return;
Postorder(root -> left);
Postorder(root -> right);
cout << root -> data << " ";
}
// Traverse each level
void Level_Order(BST* root){
if(!root) return;
queue < BST* > bfs;
bfs.push(root);
while(!bfs.empty()){
BST* curr = bfs.front();
bfs.pop();
cout << curr -> data << " ";
if(curr -> left)
bfs.push(curr -> left);
if(curr -> right)
bfs.push(curr -> right);
}
}
// Search on a node
bool Search(BST* root, int val){
if(!root) return false;
if(root -> data == val) return true;
if(val > root -> data) return Search(root -> right, val);
else return Search(root -> left, val);
}
// Get minimum node in BST
BST* minValueNode(BST* node){
BST* current = node;
while (current && current -> left != nullptr) current = current -> left;
return current;
}
// Get maximum node in BST
BST* maxValueNode(BST* node){
BST* current = node;
while (current && current -> right != nullptr) current = current -> right;
return current;
}
// Delete Node
BST* Delete_Node(BST* root, int key){
if(!root) return root;
if(key < root -> data)
root -> left = Delete_Node(root -> left, key);
else if(key > root -> data)
root -> right = Delete_Node(root -> right, key);
else {
if(!root -> left && !root -> right) return nullptr;
else if(!root -> left){
BST* temp = root -> right;
free(root);
return temp;
}else if(!root -> right){
BST* temp = root -> left;
free(root);
return temp;
}
BST* temp = minValueNode(root -> right);
root -> data = temp -> data;
root -> right = Delete_Node(root -> right, temp -> data);
}
return root;
}
};
// -------------------------- Power inverse -----------------------------
template < typename T = int > struct Power_Inverse {
T n, r, mod;
vector < T > fact, inv;
T fast_power(T b, T e, T MOD){
T power = 1;
while(e){
if(e & 1) power = mod_combine(power, b, MOD);
e >>= 1, b = mod_combine(b, b, MOD);
}
return power % MOD;
}
T Inverse(T N, T MOD){
return fast_power(N, MOD - 2, MOD) % MOD;
}
Power_Inverse(T N, T R, T MOD){
n = N, r = R, mod = MOD;
fact.assign(n + 10, 1), inv.resize(n + 10, 1);
for(ll i = 1; i <= n; i++){
fact[i] = mod_combine(fact[i - 1], i, mod);
inv[i] = Inverse(fact[i], mod);
}
}
// Combination
T nCr(){
if(r > n) return 0ll;
return (((fact[n] % mod) * (inv[r] % mod) % mod) * (inv[n - r] % mod)) % mod;
}
// Permutation
T nPr(){
if(r > n) return 0ll;
return ((fact[n] % mod) * (inv[r] % mod)) % mod;
}
};
// -------------------------- Math Functions -----------------------------
struct Math {
Math(){}
// Greatest common divisors between two numbers
ll GCD(ll a, ll b){
return (!b ? a : GCD(b, a % b));
}
// least common multiplication between two numbers
ll LCM(ll a, ll b){
return a / GCD(a, b) * b;
}
// Get vector with the prime factors of number
vector < int > prime_factorization(ll n){
vector < int > factors;
while(n % 2 == 0) factors.push_back(2), n /= 2;
for(int i = 3; i <= sqrt(n); i += 2)
while(n % i == 0) factors.push_back(i), n /= i;
if(n > 2) factors.push_back(n);
return factors;
}
// Combination
ll nCr(ll n, ll r){
if(r > n) return 0;
ll p = 1, k = 1;
if (n - r < r) r = n - r;
// condition for minimum choose
if(n < 1) return 0;
while (r > 0){
p *= n, k *= r;
ll m = __gcd(p, k);
p /= m, k /= m, n--, r--;
}
return p;
}
// Permutation
ll nPr(ll n, ll r){
if(r > n) return 0;
ll npr = 1;
while(r-- > 0)
npr *= n--;
return npr;
}
// get a mod for big int
ll Big_Mod(string s, ll mod){
ll res = 0;
for(auto& c : s)
res = (res * 10 + (c - '0')) % mod;
return res;
}
// add two number and take mod for them