This repository has been archived by the owner on Nov 29, 2024. It is now read-only.
generated from 360-info/quarto-scaffold
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathindex.qmd
882 lines (749 loc) · 29.1 KB
/
index.qmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
---
title: "El Niño"
author: "James Goldie"
format: sverto-html
---
:::{}
{{< include /.sverto/index.qmd >}}
:::
```{r}
library(tidyverse)
library(themes360info)
library(janitor)
library(broom)
library(slider)
library(glue)
library(RColorBrewer)
library(here)
# consistent colours for enso phases
enso_colours <- c(
lanina = "#5555bb",
neutral = "lightgrey",
elnino = "#dd3333",
disagree = "#333333")
```
## Analysis: ways of measuring El Niño
For a few of these charts, we're going to compare outcomes with an indicator measuring ENSO phase (El Niño, neutral or La Niña). But as ENSO is a phenomenon of both the atmosphere and the ocean, there're a few ways to measure it. We're going to compare those to see if it makes a lot of difference to our classifications.
On the ocean side, the NINO34 index—also called the Oceanic Nino Index (ONI)—defines sea surface temperatures in the mid-eastern Pacific. An anomaly in that area from the long term average of at least +0.5°C defines an El Niño, while lower than -0.5°C defines a La Niña.
On the atmospheric side, the Southern Oscillation Index (SOI) compares the air pressure difference between Tahiti and Darwin. An SOI below -8 for an extended period defines an El Niño; an SOI above +8 defines a La Niña.
ONI is NOAA's primary index for El Ni˜no measurement, but the Australian Bureau of Meteorology typically looks at both (as well as dynamical factors and seasonal forecast models) to make the call.
Let's load data in for both and compare. Nino3.4 comes from the [NASA Physical Sciences Laboratory](https://psl.noaa.gov/gcos_wgsp/Timeseries/Nino34/):
```{r}
# import nino3.4 data anad lengthen by month, filtering out the flagged nas
here("data", "nasa-nino34-anomaly-monthly.txt") |>
read_table(skip = 1, col_names = c("year", paste0("month", 1:12)),
col_types = "idddddddddddd") |>
head(-7) |>
pivot_longer(-year, names_to = "month", values_to = "nino34",
names_pattern = "month(\\d{1,2})") |>
mutate(
month = as.numeric(month),
nino34 = if_else(between(nino34, -20, 20), nino34, NA_real_)) ->
nino34
# let's calculate the average for june-sep each year
nino34 |>
filter(month %in% 6:9) |>
group_by(year) |>
summarise(mean_nino34 = mean(nino34, na.rm = TRUE)) |>
mutate(
phase_nino34 = case_when(
mean_nino34 <= -0.5 ~ "lanina",
mean_nino34 >= 0.5 ~ "elnino",
TRUE ~ "neutral")) ->
nino34_jjas
```
And here's SOI over June-Sep each year:
```{r}
here("data", "soi-monthly-raw.csv") |>
read_csv(col_names = c("year_month", "soi")) |>
separate(year_month, into = c("year", "month"), sep = 4) |>
mutate(across(c(year, month), as.numeric)) |>
filter(year >= 1901) ->
soi
soi |>
filter(month %in% 6:9) |>
group_by(year) |>
summarise(mean_soi = mean(soi, na.rm = TRUE)) |>
mutate(
phase_soi = case_when(
mean_soi >= 7 ~ "lanina",
mean_soi <= -7 ~ "elnino",
TRUE ~ "neutral")) |>
write_csv(here("data", "soi-jjas.csv")) ->
soi_jjas
```
Now we can join and compare the two:
```{r}
nino34 |>
inner_join(soi, join_by(year == year, month == month),
relationship = "one-to-one") |>
mutate(
phase_soi = case_when(
soi >= 7 ~ "lanina",
soi <= -7 ~ "elnino",
TRUE ~ "neutral"),
phase_nino34 = case_when(
nino34 <= -0.5 ~ "lanina",
nino34 >= 0.5 ~ "elnino",
TRUE ~ "neutral"),
phase_either = case_when(
phase_nino34 == "elnino" & phase_soi == "lanina" |
phase_nino34 == "lanina" & phase_soi == "elnino" ~ "disagree",
phase_nino34 == "neutral" & phase_soi == "neutral" ~ "neutral",
phase_nino34 == "elnino" ~ "elnino",
phase_soi == "elnino" ~ "elnino",
phase_nino34 == "lanina" ~ "lanina",
phase_soi == "lanina" ~ "lanina",
TRUE ~ NA_character_),
phase_both = case_when(
phase_nino34 == "elnino" & phase_soi == "lanina" |
phase_nino34 == "lanina" & phase_soi == "elnino" ~ "disagree",
phase_nino34 == "neutral" & phase_soi == "neutral" ~ "neutral",
phase_nino34 == "elnino" ~ "elnino",
phase_soi == "elnino" ~ "elnino",
phase_nino34 == "lanina" ~ "lanina",
phase_soi == "lanina" ~ "lanina",
TRUE ~ NA_character_)) |>
write_csv(here("data", "enso-indicators-monthly.csv")) ->
enso
nino34 |>
inner_join(soi, join_by(year == year, month == month),
relationship = "one-to-one") |>
filter(month %in% 6:9) |>
group_by(year) |>
summarise(
mean_soi = mean(soi, na.rm = TRUE),
mean_nino34 = mean(nino34, na.rm = TRUE)) |>
mutate(
phase_soi = case_when(
mean_soi >= 7 ~ "lanina",
mean_soi <= -7 ~ "elnino",
TRUE ~ "neutral"),
phase_nino34 = case_when(
mean_nino34 <= -0.5 ~ "lanina",
mean_nino34 >= 0.5 ~ "elnino",
TRUE ~ "neutral"),
phase_either = case_when(
phase_nino34 == "elnino" & phase_soi == "lanina" |
phase_nino34 == "lanina" & phase_soi == "elnino" ~ "disagree",
phase_nino34 == "neutral" & phase_soi == "neutral" ~ "neutral",
phase_nino34 == "elnino" ~ "elnino",
phase_soi == "elnino" ~ "elnino",
phase_nino34 == "lanina" ~ "lanina",
phase_soi == "lanina" ~ "lanina",
TRUE ~ NA_character_),
phase_both = case_when(
phase_nino34 == "elnino" & phase_soi == "lanina" |
phase_nino34 == "lanina" & phase_soi == "elnino" ~ "disagree",
phase_nino34 == "neutral" & phase_soi == "neutral" ~ "neutral",
phase_nino34 == "elnino" ~ "elnino",
phase_soi == "elnino" ~ "elnino",
phase_nino34 == "lanina" ~ "lanina",
phase_soi == "lanina" ~ "lanina",
TRUE ~ NA_character_)) |>
write_csv(here("data", "enso-indicators-jjas.csv")) ->
enso_jjas
# lengthen and plot
enso |>
select(year, month, starts_with("phase")) |>
pivot_longer(starts_with("phase"), names_pattern = "phase_(nino34|soi|either)",
names_to = "indicator", values_to = "phase") |>
mutate(date = ymd(paste0(year, month, "-01"))) |>
ggplot() +
aes(x = date, y = indicator, fill = phase) +
geom_tile(colour = "#111111") +
scale_fill_manual(values = enso_colours) +
scale_x_date(date_breaks = "5 years", date_labels = "%Y") +
theme_360() +
theme(legend.position = "top", legend.direction = "horizontal") ->
enso_plot
enso_plot |>
ggsave(here("out", "enso-indicators.png"), plot = _,
height = 400, width = 1800, units = "px", scale = 4, bg = "white")
# el nino/la nina years according to both indicators?
# enso |>
# filter(phase_both %in% c("elnio", "lanina")) |>
# select(year, phase_both) |>
# print(n = Inf)
```
When we demand that both indicators agree on a phase, we get a subset of the years manually indicated as an El Niño or La Niña by the Bureau of Meteorology. That could be because our indicators are focusing on June–September (partly because we're interested in kharif crops later in this analysis), where some ENSO events might develop later (or maybe one of the ocean or atmosphere began later than the other).
If we go with at least one of the indicators in a phase (provided the two don't disagree with opposite phases), we get a list more consistent with the BOM.
## Analysis: Indian rainfall and ENSO
```{r}
here("data", "india-rainfall-raw.csv") |>
read_csv() |>
clean_names() |>
rename(region = x1) |>
rename_with(str_replace_all, everything(), "jun_sept", "jjas") |>
filter(!is.na(region)) ->
india_rainfall
```
## Analysis: monthly SOI to JJAS SOI
Let's join the two and visualise by colour. Here's the Southern Peninsula:
```{r}
india_rainfall |>
filter(region == "Peninsular India") |>
select(year, actual_rainfall_jjas, departure_percentage_jjas) |>
left_join(soi_jjas, by = join_by(year)) |>
ggplot() +
aes(x = year, y = departure_percentage_jjas, fill = phase_soi) +
geom_col() +
scale_y_continuous(labels = scales::label_percent(scale = 1)) +
scale_fill_manual(values = enso_colours) +
theme_minimal() +
theme(
panel.grid.minor = element_blank(),
panel.grid.major.x = element_blank(),
legend.position = "top",
legend.direction = "horizontal") +
labs(
fill = NULL, x = NULL, y = "Rainfall anomaly",
title = "South Peninsula: annual June–September rainfall")
```
## Analysis: crop yield and ENSO
Now let's pull in crop yield data from [ICRISAT](http://data.icrisat.org). This data has columns for each crop _and_ each of three measures:
1. Area (in thousands of hectares),
2. Productions (in thousands of tons), and
3. Yield (in kilograms per hectare)
Let's lengthen this a bit so that we can compute on all the dimensions, and we'll classify the states according to the rainfall region that they're in:
```{r}
here("data", "india-crops-by-district.csv") |>
read_csv() |>
janitor::clean_names() |>
pivot_longer(
cols = -c(dist_code, year, state_code, state_name, dist_name),
names_to = c("crop", ".value"),
names_pattern =
"([[:alpha:]]+)_(area_1000_ha|production_1000_tons|yield_kg_per_ha)",
values_to = "value") |>
mutate(crop = str_to_sentence(crop)) |>
mutate(
rainfall_region = case_match(state_name,
c("Kerala", "Tamil Nadu", "Andhra Pradesh", "Karnataka", "Telangana") ~
"Peninsular India",
c("Chhattisgarh", "Gujarat", "Madhya Pradesh", "Maharashtra", "Orissa") ~
"Central India",
c("Rajasthan", "Uttar Pradesh", "Haryana", "Punjab", "Uttarakhand",
"Himachal Pradesh") ~
"North West India",
c("Assam", "Bihar", "Jharkhand", "West Bengal" ) ~ "North East India")) |>
select(year, dist_code, dist_name, state_code, state_name, rainfall_region,
crop, everything()) ->
india_crops
```
### Production by region and crop
Now that this is tidy, let's start wide.
Before we start looking at breakdowns across regions and crops, let's first just find out which regions and crops produce the most (in mass terms!)
```{r}
india_crops |>
filter(year %in% 2005:2014) |>
group_by(state_name, rainfall_region) |>
summarise(total_prod_1000_tons = sum(production_1000_tons, na.rm = TRUE)) |>
ungroup() |>
mutate(state_name = fct_reorder(state_name, total_prod_1000_tons)) |>
ggplot() +
aes(x = state_name, y = total_prod_1000_tons, fill = rainfall_region) +
geom_col() +
coord_flip() +
theme_minimal()
```
Looks like biggest-producing states over 2005-2014 were all Central and North West region states.
How about crops?
```{r}
india_crops |>
filter(year %in% 2005:2014) |>
group_by(crop) |>
summarise(total_prod_1000_tons = sum(production_1000_tons, na.rm = TRUE)) |>
mutate(crop = fct_reorder(crop, total_prod_1000_tons)) |>
ggplot() +
aes(x = crop, y = total_prod_1000_tons) +
geom_col() +
coord_flip() +
theme_minimal()
```
As expected, rice and wheat are big ones, followed by sugarcane, oilseeds and maize.
We probably want to focus on [_kharif_ crops](), which are ones grown during the monsoon season that are dependent on good rain. Rice and maize are both major kharif crops, but wheat is not—it's a _rabi_ crop, grown in the winter.
### Annual yield (all regions and crops)
:::{.callout-note}
Yield in kg/ha is `(production * 10^6) / (area in * 10^3)`
:::
```{r}
india_crops |>
group_by(year) |>
summarise(
sum_area_1000_ha = sum(area_1000_ha, na.rm = TRUE),
sum_production_1000_tons = sum(production_1000_tons, na.rm = TRUE),
yield_kg_per_ha =
(sum_production_1000_tons * 1e6) /
(sum_area_1000_ha * 1e6)) ->
india_national_allcrops
```
```{r}
india_national_allcrops |>
left_join(soi_jjas, by = join_by(year)) |>
ggplot() +
aes(x = year, y = yield_kg_per_ha) +
geom_point(aes(colour = phase_soi)) +
geom_smooth(colour = "#eeeeee", se = FALSE) +
scale_colour_manual(values = enso_colours) +
theme_minimal() +
theme(
legend.direction = "horizontal",
legend.position = "top") +
labs(
x = NULL, y = "Yield (kg per ha)",
title = "Indian national crop yield (all crops)",
subtitle = "Highlighted by ENSO phase")
```
We can see that yield has increased steadily over time (likely thanks to technological improvements), but you can see a bit of year-to-year variation.
There's a lot of noise here, as we're looking at parts of India and crops that are less dependent on rainfall.
### Yield by region
Let's look at this two ways: all crops for each region, and each crop for all regions. We'll start looking at each region:
```{r}
india_crops |>
group_by(year, rainfall_region) |>
summarise(
sum_area_1000_ha = sum(area_1000_ha, na.rm = TRUE),
sum_production_1000_tons = sum(production_1000_tons, na.rm = TRUE),
yield_kg_per_ha =
(sum_production_1000_tons * 1e6) /
(sum_area_1000_ha * 1e6)) |>
ungroup() ->
india_allcrops_byregion
india_allcrops_byregion |>
left_join(soi_jjas, by = join_by(year)) |>
ggplot() +
aes(x = year, y = yield_kg_per_ha) +
geom_line(colour = "#eeeeee", linewidth = 0.5) +
geom_point(aes(colour = phase_soi)) +
geom_smooth(colour = "#dddddd", se = FALSE) +
facet_wrap(vars(rainfall_region)) +
scale_colour_manual(values = enso_colours) +
theme_minimal() +
theme(
legend.direction = "horizontal",
legend.position = "top") +
labs(
x = NULL, y = "Yield (kg per ha)",
title = "Indian national crop yield (all crops)",
subtitle = "Highlighted by ENSO phase")
```
It's interesting to see that yield variability has increased substantially in the last 20 years, particularly in Peninsular India.
```{r}
india_crops |>
filter(
rainfall_region == "Peninsular India") |>
group_by(year) |>
summarise(
sum_area_1000_ha = sum(area_1000_ha, na.rm = TRUE),
sum_production_1000_tons = sum(production_1000_tons, na.rm = TRUE),
yield_kg_per_ha =
(sum_production_1000_tons * 1e6) /
(sum_area_1000_ha * 1e6)) |>
ungroup() |>
left_join(enso_jjas, by = join_by(year)) |>
filter(!is.na(yield_kg_per_ha), !is.na(mean_soi)) ->
# write_csv(here("data", "india-ricemaize-peninsular.csv")) ->
india_allcrops_peninsular
ggplot(india_allcrops_peninsular) +
aes(x = year, y = yield_kg_per_ha) +
geom_line(colour = "#eeeeee", linewidth = 0.5) +
geom_point(aes(colour = phase_nino34)) +
geom_smooth(colour = "#eeeeee", se = FALSE) +
scale_colour_manual(values = enso_colours) +
theme_minimal() +
theme(
legend.direction = "horizontal",
legend.position = "top",
panel.grid.major.x = element_blank(),
panel.grid.minor.x = element_blank()) +
labs(
x = NULL, y = "Yield (kg per ha)",
title = "Crop yield in Peninsular India",
subtitle = "Highlighted by ENSO phase")
```
```{r}
# let's pre-calculate the loess smoother and then regress the errors against
# enso phase
fit_and_augment_smoother <- function(df) {
df |>
loess(yield_kg_per_ha ~ year, data = _) |>
augment(data = df)
}
india_allcrops_byregion |>
left_join(enso_jjas, by = join_by(year)) |>
filter(!is.na(yield_kg_per_ha), !is.na(mean_soi)) |>
nest(.by = rainfall_region) |>
mutate(data = map(data, fit_and_augment_smoother)) |>
unnest(data) ->
india_allcrops_byregion_resid
india_allcrops_peninsular |>
filter(!is.na(yield_kg_per_ha), !is.na(mean_soi)) |>
loess(yield_kg_per_ha ~ year, data = _) |>
augment() |>
left_join(india_allcrops_peninsular,
join_by(year == year, yield_kg_per_ha == yield_kg_per_ha)) |>
write_csv(here("data", "india-allcrops-peninsular.csv")) ->
india_allcrops_peninsular_resid
india_allcrops_peninsular_resid |>
mutate(
elnino_yield = if_else(phase_nino34 == "elnino", yield_kg_per_ha, NA_real_),
neutral_yield = if_else(phase_nino34 == "neutral", yield_kg_per_ha, NA_real_),
lanina_yield = if_else(phase_nino34 == "lanina", yield_kg_per_ha, NA_real_),
elnino_resid = if_else(phase_nino34 == "elnino", yield_kg_per_ha, NA_real_),
neutral_resid = if_else(phase_nino34 == "neutral", yield_kg_per_ha, NA_real_),
lanina_resid = if_else(phase_nino34 == "lanina", yield_kg_per_ha, NA_real_),
) |>
select(year, .fitted, .resid, ends_with("yield"), ends_with("resid")) |>
print(n = Inf) |>
write_csv(here("data", "flourish-peninsular-allcrops.csv"), na = "")
ggplot(india_allcrops_byregion_resid) +
aes(x = rainfall_region, y = .resid) +
geom_boxplot(
aes(colour = phase_nino34, fill = phase_nino34),
outlier.shape = NA,
alpha = 0.25) +
geom_point(aes(colour = phase_soi), position = "jitter", alpha = 0.5, size = 0.5) +
geom_hline(yintercept = 0) +
scale_colour_manual(values = enso_colours) +
scale_fill_manual(values = enso_colours) +
coord_flip() +
theme_minimal() +
theme(
panel.grid.minor = element_blank(),
panel.grid.major.y = element_blank(),
legend.position = "top", legend.direction = "horizontal") +
labs(
x = NULL, y = "Residual on predicted crop yield (kg per hectare)",
colour = "ENSO phase",
fill = "ENSO phase")
```
The strong relationship here in Peninsular India, with a weaker relationship in Central India.
### Crops grown by region
```{r}
india_crops |>
filter(year == max(year, na.rm = TRUE)) |>
group_by(rainfall_region, crop) |>
summarise(
total_production_1000_tons = sum(production_1000_tons, na.rm = TRUE)) |>
ungroup() |>
arrange(crop) ->
crops_by_region_2022
# we need some additional colours for all this crop exploration
colour_count = length(unique(crops_by_region_2022$crop))
get_palette = colorRampPalette(brewer.pal(9, "Paired"))
crop_colours = sample(get_palette(colour_count))
ggplot(crops_by_region_2022) +
aes(x = crop, y = total_production_1000_tons, fill = crop) +
geom_col() +
facet_wrap(vars(rainfall_region), scales = "free_y") +
scale_fill_manual(values = crop_colours) +
scale_y_continuous(expand = expansion()) +
coord_flip() +
theme_minimal() +
theme(
panel.grid.major.y = element_blank(),
panel.grid.minor.y = element_blank()
)
```
Rice is a major crop in all four regions—Peninsular India contributed around 25 million tonnes in 2022 (about 20% of the national total).
Maize is another crop grown in this season, and Peninsular India is a major grower—about 13 million tonnes (about 40% of the national total).
The other big crops in
### Yield by crop
```{r}
india_crops |>
group_by(year, crop) |>
summarise(
sum_area_1000_ha = sum(area_1000_ha, na.rm = TRUE),
sum_production_1000_tons = sum(production_1000_tons, na.rm = TRUE),
yield_kg_per_ha =
(sum_production_1000_tons * 1e6) /
(sum_area_1000_ha * 1e6)) |>
ungroup() ->
india_national_bycrop
# let's pre-calculate the loess smoother and then regress the errors against
# enso phase
fit_and_augment_smoother <- function(df) {
df |>
loess(yield_kg_per_ha ~ year, data = _) |>
augment(data = df)
}
india_national_bycrop |>
left_join(soi_jjas, by = join_by(year)) |>
filter(!is.na(yield_kg_per_ha), !is.na(mean_soi)) |>
nest(.by = crop) |>
mutate(data = map(data, fit_and_augment_smoother)) |>
unnest(data) ->
india_national_bycrop_resid
ggplot(india_national_bycrop_resid) +
aes(x = crop, y = .resid) +
geom_boxplot(
aes(colour = phase_soi, fill = phase_soi),
outlier.shape = NA,
alpha = 0.25) +
geom_point(aes(colour = phase_soi), position = "jitter", alpha = 0.5, size = 0.5) +
geom_hline(yintercept = 0) +
facet_wrap(vars(crop), scales = "free") +
scale_colour_manual(values = enso_colours) +
scale_fill_manual(values = enso_colours) +
coord_flip() +
theme_minimal() +
theme(
panel.grid.minor = element_blank(),
panel.grid.major.y = element_blank(),
legend.position = "top", legend.direction = "horizontal",
axis.text.x = element_blank()) +
labs(
x = NULL, y = "Residual on predicted crop yield (kg per hectare)",
colour = "ENSO phase",
fill = "ENSO phase")
```
Crops that seem to be most affected by ENSO include Groundnut, Cotton, Pigeonpea, Pulses and Soyabean. Others with a possible but marginal-looking relationship include Maize, Millet, Mustard, Oilseed, Safflower and Rice.
## Analysis: crop yield and rainfall
That said, using SOI directly as a predictor might not be the way to go. It might be helpful to look at rainfall more directly as a predictor and then see the effect of ENSO on top.
The first thing we'll need to do is match Indian states to rainfall regions (NE, NW, central, peninsular). Then we can join the rainfall and crop yield datasets.
```{r}
# first, summarise by year, state and crop
india_crops |>
group_by(year, rainfall_region, crop) |>
summarise(
sum_area_1000_ha = sum(area_1000_ha, na.rm = TRUE),
sum_production_1000_tons = sum(production_1000_tons, na.rm = TRUE),
yield_kg_per_ha =
(sum_production_1000_tons * 1e6) /
(sum_area_1000_ha * 1e6)) |>
ungroup() ->
india_regions_crops
# now join rainfall and crop yield
india_regions_crops |>
left_join(india_rainfall,
by = join_by(year == year, rainfall_region == region),
multiple = "all",
relationship = "many-to-one") ->
india_regions_all
fit_and_augment_smoother <- function(df) {
df |>
loess(yield_kg_per_ha ~ year, data = _) |>
augment(data = df)
}
# fit a loess and get the yield residuals
india_regions_all |>
filter(!is.na(yield_kg_per_ha), !is.na(year),
is.finite(year), is.finite(yield_kg_per_ha)) |>
nest(.by = c(crop, rainfall_region)) |>
mutate(data = map(data, fit_and_augment_smoother)) |>
unnest(data) |>
rename(yield_fitted = .fitted, yield_resid = .resid) ->
india_regions_all_resid
india_regions_all_resid |>
filter(rainfall_region == "Peninsular India", crop %in% c("Rice", "Maize")) |>
left_join(enso_jjas, join_by(year == year)) |>
mutate(across(
starts_with("phase"),
\(x) case_match(x,
"elnino" ~ "El Niño",
"lanina" ~ "La Niña",
"neutral" ~ "Neutral"))) |>
write_csv(here("data", "india-ricemaize-peninsular.csv")) |>
# now visualise rainfall against residuals
ggplot() +
aes(x = departure_percentage_jjas, y = yield_resid, colour = phase_nino34) +
geom_hline(yintercept = 0) +
geom_vline(xintercept = 0) +
geom_point(size = 3) +
facet_grid(rows = vars(crop), cols = vars(rainfall_region), scales = "free") +
scale_colour_manual(values = enso_colours) +
theme_minimal() +
theme(
plot.background = element_rect(fill = "white")
) ->
region_crop_rainfall_plot
ggsave(
here("out", "region_crop_rainfall_plot.png"),
region_crop_rainfall_plot,
height = 7200, width = 1200, units = "px")
```
It still looks like the stronger relationship here is with certain crops rather than certain regions, but let's break it down by both.
```{r}
india_regions_all_resid |>
filter(
rainfall_region == "Peninsular India",
crop %in% c("Rice", "Maize", "Groundnut", "Linseed", "Soybean")) |>
left_join(soi_jjas, by = join_by(year)) ->
peninsula_kharif
ggplot(peninsula_kharif) +
aes(x = departure_percentage_jjas, y = yield_resid) +
geom_hline(yintercept = 0) +
geom_vline(xintercept = 0) +
geom_point(aes(colour = phase_soi)) +
facet_wrap(vars(crop), scales = "free") +
scale_colour_manual(values = enso_colours) +
theme_minimal() +
theme(
plot.background = element_rect(fill = "white")
) ->
peninsular_kharifcrop_rainfall_plot
ggsave(
here("out", "peninsular_kharifcrop_rainfall_plot.png"),
peninsular_kharifcrop_rainfall_plot,
height = 2400, width = 1200, units = "px")
```
## Analysis: ENSO and global and national temperatures
Here, global and national temperatures are courtesy of [Berkeley Earth](https://berkeleyearth.org/data/). They have generously agreed to licence the data here under [Creative Commons Attribution (CC BY 4.0)](https://creativecommons.org/licenses/by/4.0/).
Let's start with global temperature data:
```{r}
list.files(here("data"), pattern = glob2rx("berkeley-*.txt"), full.names = TRUE) |>
set_names(x = _) |>
map_dfr(read_table,
col_names = c(
"year", "month",
"anom_monthly", "unc_monthly",
"anom_annual", "unc_annual",
"anom_5yr", "unc_5yr",
"anom_10yr", "unc_10yr",
"anom_20yr", "unc_20yr"),
col_types = "iidddddddddd",
comment = "%",
na = c("NA", "NaN"),
.id = "path") |>
slice(-1) |>
mutate(
fname = basename(path),
location =
str_replace_all(fname,
c("berkeley-monthly-tavg-" = "", ".txt" = "", "_" = " ")) |>
str_to_title(),
relationship_long = factor(if_else(
location %in% c("Indonesia", "Malaysia", "Ecuador"),
glue("{location}: hotter ↑ in <span style=\"color: {enso_colours['elnino']}\">El Niño years</span>"),
glue("{location}: hotter ↑ in <span style=\"color: {enso_colours['lanina']}\">La Niña years</span>")))) |>
select(location, relationship_long, everything(), -path, -fname) ->
temp_monthly
```
Let's join it to the Nino3.4, which we have monthly across the whole year. But we might need a smoother on those first.
```{r}
enso |>
select(-starts_with("phase")) |>
mutate(
soi_3mth = (soi + lead(soi) + lag(soi)) / 3,
nino34_3mth = (nino34 + lead(nino34) + lag(nino34)) / 3,
phase_nino34 = case_when(
nino34_3mth <= -0.5 ~ "lanina",
nino34_3mth >= 0.5 ~ "elnino",
TRUE ~ "neutral"),
phase_soi = case_when(
soi_3mth <= -8 ~ "elnino",
soi_3mth >= 8 ~ "lanina",
TRUE ~ "neutral")) ->
enso_smooth
```
```{r}
temp_monthly |>
left_join(enso_smooth, join_by(year == year, month == month), relationship = "many-to-one") |>
mutate(date = ymd(paste(year, month, "01"))) |>
filter(date >= as.Date("1900-01-01")) ->
temp_toplot
```
First let's look at the global picture:
```{r}
temp_toplot |>
filter(!is.na(anom_annual), location == "Global") |>
ggplot() +
aes(x = date) +
geom_linerange(
aes(ymax = anom_annual, ymin = anom_5yr, colour = phase_nino34)) +
geom_line(aes(y = anom_5yr), colour = "black") +
# add points for recent years after the smoother
geom_point(
aes(y = anom_annual, colour = phase_nino34),
data = temp_toplot |>
filter(
location == "global",
year > 2016,
is.na(anom_5yr),
!is.na(anom_annual)),
size = 0.25) +
# general text annotations
annotate_360_glasslight(
x = as.Date("1905-01-01"), y = 0.875, size = 5,
hjust = "inward",
label = glue(
"The globe has **steadily warmed** over the last century,",
"but temperatures fluctuate year-to-year.",
"<span style=\"color: {enso_colours['elnino']}\">**El Niño years**</span> often push global",
"temperatures up...",
.sep = "<br>")) +
annotate_360_glasslight(
x = as.Date("2020-01-01"), y = -0.515, size = 5,
hjust = "inward",
label = glue(
"... whereas <span style=\"color: {enso_colours['lanina']}\">**La Niña years**</span> often",
"push them down.",
.sep = "<br>")) +
scale_colour_manual(values = enso_colours, guide = NULL) +
scale_x_date(date_breaks = "20 years", date_labels = "%Y") +
scale_y_continuous(
labels = scales::label_number(accuracy = 0.1, style_positive = "plus", suffix = "°C")) +
theme_360() +
theme(
panel.grid.major.x = element_blank(),
panel.grid.minor.x = element_blank(),
plot.title = element_text(margin = margin(t = 14, unit = "pt"))) +
labs(
x = NULL, y = NULL,
title = toupper("El Niño and global warming"),
subtitle = "Berkeley Earth estimates a 54% chance that 2023 will be the hottest year on record",
caption = glue(
"**CHART**: James Goldie, 360info",
"**DATA:** Berkeley Earth, NASA PSL",
"<span style='font-size:12pt;'>El Niño/La Niña years classified using the Nino3.4 index; temperature anomalies from 1951–1980 average</span>",
.sep = "<br>")) ->
global_plot
save_360plot(global_plot,
here("out", "global-temperatures-enso.png"),
shape = "sdtv-landscape")
save_360plot(global_plot,
here("out", "global-temperatures-enso.svg"),
shape = "sdtv-landscape")
```
And then some selected regions:
```{r}
temp_toplot |>
filter(!is.na(anom_annual), location != "Global") |>
ggplot() +
aes(x = date) +
geom_linerange(
aes(ymax = anom_annual, ymin = anom_5yr, colour = phase_nino34)) +
geom_line(aes(y = anom_5yr), colour = "black") +
facet_wrap(vars(relationship_long), drop = TRUE, ncol = 2, scales = "free_y") +
scale_colour_manual(values = enso_colours, guide = NULL) +
scale_x_date(date_breaks = "20 years", date_labels = "%Y") +
scale_y_continuous(
labels = scales::label_number(
style_positive = "plus",
suffix = "°C")) +
theme_360() +
theme(
panel.grid.major.x = element_blank(),
panel.grid.minor.x = element_blank(),
panel.grid.minor.y = element_blank(),
plot.title = element_text(margin = margin(t = 14, unit = "pt")),
strip.text = ggtext::element_markdown(face = "bold", hjust = 0)
) +
labs(
x = NULL, y = NULL,
title = toupper("El Niño and regional warming"),
subtitle = "El Niño's effects vary across the Pacific",
caption = glue(
"**CHART**: James Goldie, 360info",
"**DATA:** Berkeley Earth, NASA PSL",
"<span style='font-size:12pt;'>El Niño/La Niña years classified using the Nino3.4 index; temperature anomalies from 1951–1980 average</span>",
.sep = "<br>")) ->
regional_plot
save_360plot(regional_plot,
here("out", "regional-temperatures-enso.png"),
shape = "sdtv-landscape")
save_360plot(regional_plot,
here("out", "regional-temperatures-enso.svg"),
shape = "sdtv-landscape")
```