-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathgeny.py
700 lines (627 loc) · 26.2 KB
/
geny.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
# %% Imports & Initialization
import pickle
import os
import re
import numpy as np
import multiprocessing as mp
import subprocess as sp
import collections
import pysam
import mappy
import gzip
import logging
import argparse
log = logging.info
def parse_args():
parser = argparse.ArgumentParser(
description="Geny: a tool for genotyping KIR genes",
)
parser.add_argument('file', help="input BAM/CRAM/FASTA/FASTQ file", metavar='file')
parser.add_argument('-V', '--version', action="version", version="Geny v1.0 (Feb 2024)")
parser.add_argument('-l', '--log', default=None, help="log file location")
parser.add_argument('-c', '--coverage', type=int, default=0, help="sample coverage")
parser.add_argument('-t', '--threads', type=int, default=16, help="number of threads to use")
return parser.parse_args()
if __name__ == "__main__":
# Use sys.argv when called from command line
try:
get_ipython().__class__.__name__
NOTEBOOK = True
log("[!!!] running in notebook")
args = dotdict({'threads': 16, 'coverage': 20})
logging.basicConfig(level=logging.INFO)
except:
NOTEBOOK = False
args = parse_args()
if args.log:
logging.basicConfig(filename=args.log, filemode='w', encoding='utf-8', level=logging.INFO)
else:
logging.basicConfig(level=logging.INFO)
log("[!!!] running as script")
log(f"[!!!] using {args.threads} threads")
from common import timeit, timing, dotdict
class Database:
def __init__(self, path):
with gzip.open(path, "rb") as fo:
(self.genes, _, _, self.minor_to_major) = pickle.load(fo)
def alleles(self):
for g in self.genes.values():
yield from g.alleles.values()
if __name__ == "__main__":
with timing("initializaiton"):
db = Database("database.geny")
#%% Read BAM reads
class Hit:
pass
class Sample:
def __init__(self, path):
self.path = path
self.reads = []
class Read:
def __init__(self, name, pair, seq, comment=None, qual=None):
self.name = name
self.pair = pair
self.seq = seq
self.comment = comment
self.alignments = {}
@timeit
def get_bam_reads(path: str) -> Sample:
f = Sample(path)
log(f'[sample] bam: {path}')
regions = [
"chr2:142731000-142734000",
"chr12:98943000-98946000",
"chr19:12733000-12736000",
"chr19:41300000-41400000",
"chr19:46000000-47000000",
"chr19:52000000-56000000",
]
with pysam.AlignmentFile(path) as bam:
for contig in bam.header.references:
if contig.startswith("chr19_"):
regions.append(contig)
for r in regions:
with pysam.AlignmentFile(path) as bam:
for read in bam.fetch(region=r):
f.reads.append(Sample.Read(
read.query_name,
read.is_read2,
read.query_sequence,
read.query_qualities
))
f.read_len = len(f.reads[0].seq)
f.reads.sort(key=lambda r: (r.name, r.pair))
return f
@timeit
def get_fq_reads(path: str) -> Sample:
f = Sample(path)
log(f'[sample] fasta: {path}')
with pysam.FastxFile(path) as fq:
for read in fq:
name, pair = read.name.split("/")
f.reads.append(Sample.Read(
name,
pair == "2",
read.sequence,
read.comment,
'', # read.quality
))
f.read_len = len(f.reads[0].seq)
f.reads.sort(key=lambda r: (r.name, r.pair))
return f
@timeit
def calculate_coverage(path: str, cn_region=("chr22", 19941772, 19969975)):
cn = collections.defaultdict(int)
with pysam.AlignmentFile(path) as bam:
for read in bam.fetch(region=f"{cn_region[0]}:{cn_region[1]}-{cn_region[2]}"):
if read.reference_end is None: continue
a = (read.reference_start, read.reference_end)
b = (cn_region[1], cn_region[2])
if a[0] <= b[0] <= a[1] or b[0] <= a[0] <= b[1]:
start = read.reference_start
if read.cigartuples is None: continue
if read.is_supplementary: continue
for op, size in read.cigartuples:
if op in [0, 7, 8, 2]:
for i in range(size):
cn[start + i] += 1
start += size
cov = sum(cn.values()) / (cn_region[2] - cn_region[1]) / 2
return round(cov)
if __name__ == "__main__":
path = args.file
if path.endswith('.fa') or path.endswith('.fq') or path.endswith('.fastq'):
sample = get_fq_reads(path)
cov = args.coverage
else:
sample = get_bam_reads(path)
cov = calculate_coverage(path)
if args.coverage:
cov = args.coverage
if not cov:
raise ValueError("coverage must be above zero")
sample.expected_coverage = cov
sample.min_coverage = 3
log(f"[read] {os.path.basename(sample.path)}: {len(sample.reads):,} reads loaded ({sample.expected_coverage=:.1f}x)")
#%% Map reads
def align_minimap(file, database, MAX_NM, threads):
alignments = {g: {a: [] for a in db.genes[g].alleles} for g in db.genes}
if not os.path.exists(database):
with open(database, "w") as fo:
for a in db.alleles():
print(f">{a.gene.name}.{a.name}", file=fo)
print(a.seq, file=fo)
with timing("minimap2"):
cmd = [
"minimap2",
"-x", "sr", "--secondary=yes", # short-read preset
"-c", # calculate CIGAR
"-P", "--dual=no", # do all-to-all mapping
"-t", str(threads),
database, file,
]
p = sp.Popen(cmd, stderr=sp.DEVNULL, stdout=sp.PIPE, env=os.environ)
total = 0
print("Mapping reads: ", end='')
for li, l in enumerate(iter(p.stdout.readline, "")):
if li % 5_000_000 == 0: print(f"{li:,}", end='...')
if not l: break
rn, rl, qs, qe, st, ref, _, rs, re, _, _, _, nm, *_, cg = l.decode().split("\t")
nm = int(nm[5:])
rs, re, rl = int(rs), int(re), int(rl)
if nm + rl - (re - rs) > MAX_NM: continue
h = Hit()
h.enabled = 0
h.rid = int(rn)
h.reversed = st != "+"
h.cost = nm
h.st, h.en = rs, re
h.read_st, h.read_en = int(qs), int(qe)
h.cigar = cg[5:].strip()
h.ops = None
g, a = ref.split(".")
alignments[g][a].append(h)
sample.reads[h.rid].alignments.setdefault(g, {}).setdefault(a, []).append(h)
total += 1
p.wait()
print()
assert p.returncode == 0
for a in db.alleles():
alignments[a.gene.name][a.name].sort(key=lambda h: h.st)
log(f"[minimap2] {total:,}/{li:,} mappings handled")
# os.unlink(file) # QINGHUI: I keep this for debugging later
return alignments
if __name__ == "__main__":
fa = f"{sample.path}.extract.fa"
with timing("prepare FASTA for mapping"):
with open(fa, "w") as fo:
for ri, r in enumerate(sample.reads):
print(f">{ri}", file=fo)
print(f"{r.seq}", file=fo)
sample.alignments = align_minimap(fa, "kirdb.fa", MAX_NM=5, threads=args.threads)
#%% Validation
def validate_hit(r, seq, h, a):
"""Checks if a read maps to allele mutations correctly"""
def get_cigar(a):
l = re.split(r"([A-Z=])", a)[:-1]
return [(int(l[i]), l[i + 1]) for i in range(0, len(l), 2)]
r = mappy.revcomp(r) if h.reversed else r
start, s_start = h.st, h.read_st
cover = 0
for size, op in get_cigar(h.cigar):
if op == "D":
for i in range(size):
if a.mutmap.get(start + i, (2, 0))[0] < 2:
return (False, 0)
start += size
elif op == "I":
if a.mutmap.get(start, (2, 0))[0] < 2:
return (False, 0)
s_start += size
elif op == "S":
s_start += size
elif op == "M":
for i in range(size):
if (mm := a.mutmap.get(start + i, (2, 0)))[0] < 2:
if seq[start + i] != r[s_start + i]:
return (False, 0)
else:
mmi, mm = mm
if mmi == 0:
cover |= (0b001 if mm in a.func else 0b100)
else:
cover |= 0b011
start += size
s_start += size
# 000: does not cover any mutation
# 001: covers functional mutation
# 010: covers functional shadow (_)
# 100: covers minor mutation
return (True, cover)
def filter_allele(a):
span = [0 for _ in range(len(a.seq) + 2)]
a.enabled = True
a.max_span = 0
for h in sample.alignments[a.gene.name][a.name]:
if not h.enabled: continue
a.max_span = max(h.en - h.st, a.max_span)
for j in range(h.st, h.en):
span[j] += 1
minor_covered = {m: 0 for m in a.minor}
alen = len(a.seq)
for i, (mmi, mm) in a.mutmap.items():
if mmi >= 2: continue
if mmi == 1 or mm in a.func:
till_end = max(0, alen - i)
if till_end >= a.max_span and span[i] < sample.min_coverage:
a.enabled = False
elif (mmi == 0) and mm in a.minor:
minor_covered[mm] = 1
a.uncovered = sum(1 for i in span if i < sample.min_coverage)
a.minor_uncovered = sum(1 for i in minor_covered.values() if not i) if minor_covered else 0
if minor_covered:
if a.minor_uncovered == len(minor_covered):
a.enabled = False
else:
a.minor_miss = a.minor_uncovered / len(minor_covered)
else:
a.minor_miss = 0
def parse_allele_hits(a, MAX_IS = 2_000):
for h in sample.alignments[a.gene.name][a.name]:
h.enabled, h.cover = validate_hit(sample.reads[h.rid].seq, a.idx_seq, h, a)
# Paired ends processing
for h in sample.alignments[a.gene.name][a.name]:
if not h.enabled: continue
if h.rid and sample.reads[h.rid - 1].name == sample.reads[h.rid].name:
rp = sample.reads[h.rid - 1]
elif h.rid + 1 < len(sample.reads) and sample.reads[h.rid + 1].name == sample.reads[h.rid].name:
rp = sample.reads[h.rid + 1]
else:
continue
for hp in rp.alignments.get(a.gene.name, {}).get(a.name, []):
if not hp.enabled: continue
if abs(h.st - hp.st) < MAX_IS: break
else:
# did not find a pair. maybe this is at the edge of the allele? if so, keep it!
if not (h.st < MAX_IS or h.en + MAX_IS > len(a.idx_seq)):
h.enabled = False
def parse_gene_alignments(g):
for a in g.alleles.values():
parse_allele_hits(a)
for a in g.alleles.values():
filter_allele(a)
return g.name, g.alleles, {an: [(h.enabled, h.cover) for h in hits] for an, hits in sample.alignments[g.name].items()}
if __name__ == "__main__":
with mp.Pool(args.threads) as pool, timing("filtering"):
res = pool.map(parse_gene_alignments, db.genes.values())
for gn, ga, gal in res:
db.genes[gn].alleles = ga
for an, hits in sample.alignments[gn].items():
for hi, h in enumerate(hits):
h.enabled, h.cover = gal[an][hi]
for g in db.genes.values():
ax = {}
for a in g.alleles.values():
if a.enabled:
ax.setdefault(db.minor_to_major[g.name, a.name][:3], []).append((a.name, a.uncovered/len(a.idx_seq)))
for a, aa in ax.items():
al = '; '.join(f"{x[0]}: {x[1]:.1%}" for x in sorted(aa, key=lambda x: x[1]))
log(f"[filter] {g.name} {a} => {al}")
log(f"[filter] valid_alleles={sum(1 for a in db.alleles() if a.enabled):,}")
#%% EM & SCC
@timeit
def em(sample, iteration, ROUNDS=1, EPSILON=1e-4, CUTOFF=1e-3, err = 0.01):
valid_alleles = [a for a in db.alleles() if a.enabled]
valid_reads = [r for r in sample.reads
if any(h.enabled for a in valid_alleles for h in r.alignments.get(a.gene.name, {}).get(a.name, []))]
log(f"[em] input: {len(valid_reads)=:,} {len(valid_alleles)=:,}")
matrix_count = np.zeros((len(valid_reads), len(valid_alleles))) # mapping count
matrix_err = err*np.ones((len(valid_reads), len(valid_alleles))) # error
matrix_match = np.zeros((len(valid_reads), len(valid_alleles))) # bases of match
matrix_mismatch = np.zeros((len(valid_reads), len(valid_alleles))) # bases of mismatch
matrix_ones = np.ones((len(valid_reads), len(valid_alleles)))
with timing("em_init"):
for ai, a in enumerate(valid_alleles):
total = len({i for h in sample.alignments[a.gene.name][a.name] if h.enabled for i in range(h.st, h.en)})
for ri, r in enumerate(valid_reads):
if cnt := sum(1 for h in r.alignments.get(a.gene.name, {}).get(a.name, []) if h.enabled):
matrix_count[ri][ai] = cnt / total #(scaling)
matrix_match[ri][ai] = cnt*len(r.seq)-sum(h.cost for h in r.alignments.get(a.gene.name, {}).get(a.name, []) if h.enabled)
matrix_mismatch[ri][ai] = sum(h.cost for h in r.alignments.get(a.gene.name, {}).get(a.name, []) if h.enabled)
sample.err = err
np.random.seed(0)
best_LL, best_phi = -1e100, np.random.rand(len(valid_alleles))
for _ in range(ROUNDS):
phi = np.ones(len(valid_alleles)) # uniform initialization
tot = np.sum(phi)
for j in range(len(valid_alleles)):
phi[j] /= tot # initialization
LL = 0
for _ in range(iteration, -1, -1):
# match
m1 = np.power((matrix_ones-matrix_err),matrix_match)
# mismatch
m2 = np.power(matrix_err,matrix_mismatch)
matrix = np.multiply(m1,m2)
matrix = np.multiply(matrix, matrix_count)
P_A_R = phi * matrix
P_A_R += 1e-300
new_LL = np.sum(np.log(np.sum(P_A_R, axis=1))) # log-likelihood
if abs(LL - new_LL) < EPSILON: break
LL = new_LL
P_A_R_norm = P_A_R.sum(axis=1).reshape(len(valid_reads), 1)
P_A_R /= P_A_R_norm
phi = np.sum(P_A_R, axis=0) / len(valid_reads)
#update penalty
aaa = np.sum(np.multiply(matrix_match,P_A_R))
bbb = np.sum(np.multiply(matrix_mismatch,P_A_R))
r = 1 + aaa / bbb
new_err = 1 / r
sample.err = new_err
matrix_err = new_err*np.ones((len(valid_reads), len(valid_alleles))) # error
if LL > best_LL:
best_LL, best_phi = LL, phi
indices = np.argsort(best_phi)
em_results = {(valid_alleles[i].gene.name, valid_alleles[i].name): phi[i] for i in indices}
for g in db.genes.values():
for a in g.alleles.values():
if not a.enabled: continue
a.old_enabled = a.enabled
a.enabled = (c := em_results.get((a.gene.name, a.name), 0)) > CUTOFF
if a.enabled:
log(f'[em] {a.gene.name} {a.name} => {c}')
@timeit
def get_scc(sample, depth, max_depth, top = 0.96):
from itertools import groupby
if depth >= max_depth: return
def ranges(i):
for _, b in groupby(enumerate(i), lambda pair: pair[1] - pair[0]):
b = list(b)
yield b[0][1], b[-1][1]
with timing('correct hits'):
for g in db.genes.values():
g.new_funcs = set(m[0] for a in g.alleles.values() if a.enabled for m in a.func)
for a in db.alleles():
if not a.enabled: continue
a.new_funcs = {pos for pos, (mmi, mm) in a.mutmap.items()
if (mmi == 0 and mm in a.func) or (mmi == 1 and mm[0] in g.new_funcs)}
if not a.new_funcs: # 001 allele, enable all reads...
if all(h.enabled and (h.cover & 0b010) for h in sample.alignments[a.gene.name][a.name]):
continue
else:
for h in sample.alignments[a.gene.name][a.name]:
if h.enabled and (h.cover & 0b010) and not any(h.st <= p < h.en for p in a.new_funcs):
h.cover &= 0b100
continue
if depth == 0:
for r in sample.reads:
r.ok = False
for gn, g in r.alignments.items():
for an, hits in g.items():
if not db.genes[gn].alleles[an].enabled: continue
if any(h.enabled and (h.cover & 0b001) for h in hits):
r.ok = True
break
if r.ok: break
if depth == 0:
FLANK = 150 # extend each window to left and right by FLANK
else:
FLANK = 0
EDGE = 50
sample.sccs = {}
for g in db.genes.values():
for a in g.alleles.values():
if not a.enabled: continue
scc = set()
hits = sample.alignments[a.gene.name][a.name]
for h in hits:
if not h.enabled or not sample.reads[h.rid].ok: continue
for p in range(h.st, h.en):
scc.add(p)
scc = list(ranges(sorted(list(scc))))
extended = set() # added flank
for r in scc:
for p in range(max(r[0]-FLANK,EDGE), min(r[1]+FLANK,len(a.seq)-EDGE)):
extended.add(p)
sample.sccs[a.gene.name,a.name] = list(ranges(sorted(list(extended))))
# get landmarks
DIST = 50
sample.landmarks = {}
for g in db.genes.values():
for a in g.alleles.values():
if not a.enabled: continue
sample.landmarks[a.gene.name, a.name] = []
for scc in sample.sccs[a.gene.name, a.name]:
l = list(range(scc[0], scc[1]+1, DIST))
# print(l)
for k in l:
sample.landmarks[a.gene.name, a.name].append(k)
def get_hits(g, a, p):
alns = sample.alignments[g][a]
for hi, h in enumerate(alns):
if h.enabled and h.st <= p < h.en:
yield hi, h
for g in db.genes.values():
for a in g.alleles.values():
if not a.enabled: continue
landmarks = sample.landmarks[a.gene.name, a.name]
for l in landmarks:
for _, h in get_hits(a.gene.name, a.name, l):
sample.reads[h.rid].ok = True
captured = 0
not_captured = 0
for r in sample.reads:
if r.ok:
for gn, g in r.alignments.items():
for an, hits in g.items():
if not db.genes[gn].alleles[an].enabled: continue
landmarks = sample.landmarks.get((gn, an), [])
for h in hits:
if not h.enabled:
continue
# check if there is one landmark capture the hit
can_capture = False
for landmark in landmarks:
if landmark >= h.st and landmark <= h.en:
can_capture = True
if not can_capture:
not_captured += 1
else:
captured += 1
perc = captured / (captured + not_captured)
print(f'percentage of captured is {perc}')
if perc >= top: return
get_scc(sample, depth+1, max_depth)
if __name__ == "__main__":
with timing("em_scc"):
em(sample, 1_000)
for g in db.genes.values():
used = set()
for a in g.alleles.values():
if not a.enabled: continue
ma = db.minor_to_major[g.name, a.name]
if ma in used:
a.old_enabled, a.enabled = a.enabled, False
else:
used.add(ma)
get_scc(sample,0,3)
#%%
@timeit
def ilp_solve(sample):
from math import ceil
from gurobipy import GRB, Model, quicksum, Env
# env = Env(params = params)
env = Env(empty=True)
# env.setParam("OutputFlag", 0)
env.start()
def get_hits(g, a, p):
alns = sample.alignments[g][a]
for hi, h in enumerate(alns):
if h.enabled and sample.reads[h.rid].ok and h.st <= p < h.en:
# print(g, a, h.cost)
yield hi, h
valid_alleles = sorted((a.gene.name, a.name, 0) for a in db.alleles() if a.enabled)
# print(f'[ilp] {len(valid_alleles)=:,}')
valid_reads = set(i for i, r in enumerate(sample.reads) if r.ok)
print(f'[ilp] {len(valid_reads)=:,}')
# run the ILP and get result
V = {} # assignment variable (read -> allele)
A = {} # allele chosing variable (1 if an allele is chosen)
D = {}
model = Model('geny', env=env)
model.setParam("Threads", args.threads)
model.setParam("Presolve", 2) # agressive presolve
model.setParam("PreSparsify", 2) # matrix sparsification
model.setParam("NonConvex", 2)
model.setParam('MIPGap', 0.05)
# model.setParam('PoolSolutions', 50)
model.setParam('TimeLimit',180*60)
# Best objective 9.060000000000e+02, best bound 9.060000000000e+02, gap 0.0000%
for i, (gn, an, _) in enumerate(valid_alleles[::]): # allele
max_cn = min(sum(1 for h in sample.alignments[gn][an]
if h.enabled if sample.reads[h.rid].ok
if h.st <= l < h.en)
for l in sorted(sample.landmarks.get((gn, an), [])))
max_cn = ceil(max_cn / sample.expected_coverage) + 1
for cni in range(1, min(max_cn,2)):
valid_alleles.append((gn, an, cni))
valid_alleles.sort()
for i in range(len(valid_alleles)):
A[i] = model.addVar(vtype=GRB.BINARY, name=f'S{i}_{cni}')
for i in range(1, len(valid_alleles)):
if valid_alleles[i - 1][:2] == valid_alleles[i][:2]:
model.addConstr(A[i] <= A[i - 1])
for j in valid_reads:
D[j] = model.addVar(vtype=GRB.BINARY, name=f'D{j}')
# add read assignment variable
mapped_alleles_positions = {j: set() for j in valid_reads}
mapped_reads_positions = {i: set() for i in range(len(valid_alleles))}
for i, (gene, allele, _) in enumerate(valid_alleles):
for landmark in sample.landmarks.get((gene, allele), []):
for hi, h in get_hits(gene, allele, landmark):
V[i, hi, h.rid] = model.addVar(vtype=GRB.BINARY, name=f'V{i}_{hi}_{h.rid}')
mapped_alleles_positions[h.rid].add((i, hi))
mapped_reads_positions[i].add((h.rid, hi))
for j in valid_reads: # reads
model.addConstr(D[j] + quicksum(V[i, hi, j] for i, hi in mapped_alleles_positions[j]) <= 1)
model.addConstr(D[j] + quicksum(V[i, hi, j] for i, hi in mapped_alleles_positions[j]) >= 1)
for j in valid_reads: # read
for i, hi in mapped_alleles_positions[j]: # gene
model.addConstr(V[i, hi, j] <= A[i])
for i in range(len(valid_alleles)): # allele
model.addConstr(A[i] <= quicksum(V[i, hi, j] for j, hi in mapped_reads_positions[i]))
Z = {}
Z_costs = []
for i, (gene, allele, _) in enumerate(valid_alleles):
landmarks = sample.landmarks.get((gene, allele), [])
avg = []
for pos in landmarks:
Z[i, pos] = model.addVar(lb=0, vtype=GRB.CONTINUOUS)
actual_coverage_on_lm = quicksum(V[i, hi, h.rid] for hi, h in get_hits(gene, allele, pos))
# actual_ferf_coverage_on_lm = quicksum(V[i, hi, h.rid] for hi, h in get_hits(gene, allele, pos) if h.cost == 0)
e = A[i] * (sample.expected_coverage) - actual_coverage_on_lm
model.addConstr(Z[i, pos] + e >= 0)
model.addConstr(Z[i, pos] - e >= 0)
Z_costs.append(Z[i, pos] / sample.expected_coverage)
avg.append(actual_coverage_on_lm)
g_low = 0.5
g_high = 1.5
model.addConstr(quicksum(c for c in avg)/len(landmarks) >= g_low*A[i]*sample.expected_coverage)
model.addConstr(quicksum(c for c in avg)/len(landmarks) <= g_high*A[i]*sample.expected_coverage)
A_costs = []
allele_selection_cost = 0
for i, _ in enumerate(valid_alleles):
A_costs.append(A[i] * allele_selection_cost)
# constraint the percentage of dropped reads
D_costs = []
read_drop_cost = 0.08
NUM_DROPPED = quicksum(D[j] for j in valid_reads)
MAX_DROP_PERC = 0.20
model.addConstr(NUM_DROPPED/len(valid_reads) <= MAX_DROP_PERC)
for j in valid_reads: # read
D_costs.append(D[j] * read_drop_cost)
NM_costs = []
nm_cost = 0.05
max_cost = 0
gn_prob = ''
an_prob = ''
hi_prob = 0
for (i, hi, _), v in V.items():
gn, an, _ = valid_alleles[i]
sa = sample.alignments[gn][an]
NM_costs.append(nm_cost * sa[hi].cost * v)
max_cost = max(max_cost, sa[hi].cost)
gn_prob = gn
an_prob = an
hi_prob = hi
print(f'max_cost is {max_cost} {gn_prob} {an_prob} {hi_prob}')
Z_cost = quicksum(Z_costs)
A_cost = quicksum(A_costs)
D_cost = quicksum(D_costs)
NM_cost = quicksum(NM_costs)
model.setObjective(Z_cost + A_cost + D_cost + NM_cost)
model.optimize()
print(f'[ilp] {model.objVal=:.1f}')
print(f'[ilp] {Z_cost.getValue()=:.1f}')
print(f'[ilp] {A_cost.getValue()=:.1f}')
print(f'[ilp] {D_cost.getValue()=:.1f}')
print(f'[ilp] {NM_cost.getValue()=:.1f}')
sol_A = []
sol_R = collections.defaultdict(list)
for (i, hi, j), v in V.items():
if round(v.x) > 0:
gn, an, _ = valid_alleles[i]
sol_R[gn, an].append(j)
for i, (gene, allele, _) in enumerate(valid_alleles):
if round(A[i].x) > 0:
sol_A.append((gene, allele))
num_reads_total_assigned = set()
for j in valid_reads:
for ii, hi in mapped_alleles_positions[j]:
if ii == i and (i, hi, j) in V and round(V[i, hi, j].X) > 0:
num_reads_total_assigned.add(j)
print(f'[ilp] {gene} {allele} => {len(num_reads_total_assigned)}')
dropped = [j for j in valid_reads if round(D[j].x) > 0]
print(f'[ilp] {len(dropped)=:,}')
return sol_A, sol_R, dropped
answer = ilp_solve(sample)