-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathvmp_utilities.py
1173 lines (900 loc) · 35.6 KB
/
vmp_utilities.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
This module contains tools used to complement Meep execution routines.
Some of its most useful tools are...
verify_stability_freq_res : function
Verifies stability via temporal resolution and resonant frequencies.
verify_stability_dim_index : function
Verifies stability via dimensions, refractive index and Courant factor.
MeepUnitsManager : class
Incomplete class to manage units in Meep.
It's widely based on Meep Materials Library.
@author: vall
"""
import h5py as h5
try: from mpi4py import MPI
except ModuleNotFoundError: print("Importing without module 'mpi4py'")
import meep as mp
import numpy as np
import os
import resource as res
from shutil import copy
from time import sleep, time
import vmp_materials as vml
import v_save as vs
import v_utilities as vu
import vmp_analysis as vma
sysname = vs.get_sys_name()
syshome = vs.get_sys_home()
home = vs.get_home()
tupachome = "/scratch/"
midflux_key_params = ["from_um_factor", "resolution", "courant",
"wlen_range", "cutoff", "nfreq",
"submerged_index", "surface_index", "overlap",
"cell_width", "pml_width", "source_center", "flux_box_size",
"until_after_sources",
"parallel", "n_processes", "n_cores", "n_nodes",
"split_chunks_evenly", "near2far"]
chunks_key_params = ["from_um_factor", "resolution", "courant",
"wlen_range", "cutoff", "nfreq",
"r", "material", "paper", "reference",
"submerged_index", "surface_index", "overlap",
"cell_width", "pml_width", "source_center", "flux_box_size",
"until_after_sources",
"parallel", "n_processes", "n_cores", "n_nodes",
"split_chunks_evenly", "near2far"]
normfield_key_params = ["from_um_factor", "resolution", "courant",
"submerged_index", "wlen", "surface_index", "overlap",
"cell_width", "pml_width", "source_center",
"norm_until_time", "period_line",
"parallel", "n_processes", "n_cores", "n_nodes",
"split_chunks_evenly", "hfield"]
# %%
def verify_stability_freq_res(medium, resolution, courant=0.5, print_log=True):
"""Verifies stability via temporal resolution and resonant frequencies.
Parameters
----------
medium : mp.Medium
The mp.Medium instance of the material.
resolution : int
The resolution that defines spatial discretization dx = 1/resolution
in Meep units.
Courant=0.5 : float
The Courant factor that defines temporal discretization dt = Courant*dx
in Meep units.
print_log=True : bool
Whether to print the result or not.
Returns
-------
stable : bool
True if the simulation turns out stable for that medium.
max_courant : float
Maximum value of Courant factor for the FDTD method to be stable.
"""
def log(string):
if print_log:
print(string)
resonant_frequencies = [Es.frequency for Es in medium.E_susceptibilities]
max_courant = resolution / (np.pi * np.max(resonant_frequencies))
dt = courant/resolution
stable = True
error = []
for i, f in enumerate(resonant_frequencies):
if f >= 1 / (np.pi * dt):
stable = False
error.append(i)
if stable:
answer = "Medium should be stable according to frequency and resolution criteria.\n"
answer += "All resonant frequencies are small enough for this resolution."
log(answer)
else:
answer = [str(i) + vu.counting_sufix(i) for i in error]
if len(error) > 1:
answer = vu.enumerate_string(answer) + " frequencies are"
else:
answer = answer + " frequency is"
log("Medium could be unstable according to frequency and resolution criteria:")
log(f"{answer} too large.")
log(f"Maximum Courant to be stable is {max_courant}")
return stable, max_courant
# %%
def verify_stability_dim_index(medium, freq, ndims=3, courant=0.5, print_log=True):
"""Verifies stability via dimensions, refractive index and Courant factor.
Parameters
----------
medium : The mp.Medium instance of the material.
The mp.Medium instance of the material.
freq : float, array of floats
Frequency in Meep units.
ndims=3 : int, optional
Number of dimensions of simulation.
courant=0.5 : float, optional
Courant factor that defines temporal discretization from spatial
discretization as dt = Courant * dx.
print_log=True : bool
Whether to print the result or not.
Returns
-------
stable : bool
True if the simulation turns out to be stable for that medium.
max_courant : float
Maximum value of Courant factor for the FDTD method to be stable.
"""
def log(string):
if print_log:
print(string)
try:
freq = [*freq]
except:
freq = [freq]
index = np.array(
[np.sqrt(medium.epsilon(f)[0, 0]*medium.mu(f)[0, 0]) for f in freq])
min_index = np.min(np.real(index))
stable = (courant < min_index / np.sqrt(ndims))
max_courant = min_index / np.sqrt(ndims)
if stable:
log("Simulation should be stable according to dimensions and index criteria")
else:
log("Simulation could be unstable according to dimensions and index criteria")
log(f"Maximum Courant to be stable is {max_courant}")
return stable, max_courant
# %% STABILITY CHECK
def check_stability(params):
medium = vml.import_medium(params["material"],
from_um_factor=params["from_um_factor"],
paper=params["paper"])
# Importing material constants dependant on frequency from Meep Library
stable_freq_res, max_courant_freq_res = verify_stability_freq_res(
medium, params["resolution"], courant=params["courant"], print_log=True)
freqs = np.linspace(
1/max(params["wlen_range"]), 1/min(params["wlen_range"]), params["nfreq"])
stable_dim_index = []
max_courant_dim_index = []
for f in freqs:
stable, max_courant = verify_stability_dim_index(medium, f,
courant=params["courant"],
print_log=False)
stable_dim_index.append(stable)
max_courant_dim_index.append(max_courant)
stable_dim_index = all(stable_dim_index)
max_courant_dim_index = min(max_courant_dim_index)
if stable_dim_index:
print("Medium should be stable according to dimensions and index criteria.")
else:
print("Medium could be unstable according to dimensions and index criteria.")
print(f"Maximum Courant factor should be {max_courant_dim_index}")
stable = all([stable_freq_res, stable_dim_index])
max_courant = min([max_courant_dim_index, max_courant_freq_res])
return stable, max_courant
# %%
class ParallelManager:
def __init__(self, n_cores=0, n_nodes=0):
n_processes = mp.count_processors()
parallel_specs = np.array([n_processes, n_cores, n_nodes], dtype=int)
max_index = np.argmax(parallel_specs)
for index, item in enumerate(parallel_specs):
if item == 0:
parallel_specs[index] = 1
parallel_specs[0:max_index] = np.full(parallel_specs[0:max_index].shape,
max(parallel_specs))
n_processes, n_cores, n_nodes = parallel_specs
parallel = n_processes > 1
if parallel and n_nodes == 1 and n_cores == 1:
n_cores = n_processes
self._n_processes = n_processes
self._n_cores = n_cores
self._n_nodes = n_nodes
self._parallel = parallel
@property
def n_processes(self):
return self._n_processes
@property
def n_cores(self):
return self._n_cores
@property
def n_nodes(self):
return self._n_nodes
@property
def parallel(self):
return self._parallel
@property
def specs(self):
return self.n_processes, self.n_cores, self.n_nodes
@n_processes.setter
@n_cores.setter
@n_nodes.setter
@parallel.setter
@specs.setter
def negator(self):
raise AttributeError("This attribute cannot be changed this way!")
def assign(self, process_number):
if self.parallel and self.n_processes > 1:
if process_number == 0:
return mp.am_master()
else:
return mp.my_rank() == process_number
else:
return True
def log(self, string):
if self.assign(0): print(string)
def hdf_file(self, filename, mode="r"):
if self.parallel:
f = h5.File(filename, mode, driver='mpio', comm=MPI.COMM_WORLD)
else:
f = h5.File(filename, mode)
return f
# %%
def parallel_manager(process_total_number, parallel):
def parallel_assign(process_number):
if parallel and process_total_number > 1:
if process_number == 0:
return mp.am_master()
else:
return mp.my_rank() == process_number
else:
return True
def parallel_log(string):
if parallel_assign(0):
print(string)
return
return parallel_assign, parallel_log
# %%
def parallel_hdf_file(filename, mode, parallel):
if parallel:
f = h5.File(filename, mode, driver='mpio', comm=MPI.COMM_WORLD)
else:
f = h5.File(filename, mode)
return f
# %%
class ResourcesMonitor:
def __init__(self):
self._elapsed_time = []
self._used_ram = []
self._swapped_ram = []
@property
def elapsed_time(self):
return self._elapsed_time
@property
def used_ram(self):
return self._used_ram
@property
def swapped_ram(self):
return self._swapped_ram
@elapsed_time.setter
@used_ram.setter
@swapped_ram.setter
def negator(self):
raise AttributeError("This attribute cannot be changed this way!")
def start_measure_time(self):
self._instant = time()
def end_measure_time(self):
new_instant = time()
try:
self._elapsed_time.append(new_instant - self._instant)
except TypeError:
print("Must start measurement first!")
self._instant = None
def measure_ram(self):
ram = res.getrusage(res.RUSAGE_THREAD).ru_maxrss # / (1024**2)
swap = res.getrusage(res.RUSAGE_THREAD).ru_nswap
self._used_ram.append(ram)
self._swapped_ram.append(swap)
def save(self, filename, parameters={}):
n_processes = mp.count_processors()
parallel = (n_processes > 1)
if mp.am_master():
print(f"np={n_processes}")
print(f"parallel={parallel}")
print(f"filename={filename}")
print(f"parameters={parameters}")
if os.path.isfile(filename) and mp.am_master():
os.remove(filename)
print("Removed file")
f = parallel_hdf_file(filename, "w", parallel)
print("Opened file with parallel={parallel}")
if parallel:
current_process = mp.my_rank()
print(f"Current rank: {current_process}")
f.create_dataset(
"RAM", (len(self.used_ram), n_processes), dtype="int")
f["RAM"][:, current_process] = self.used_ram
print("Saved RAM")
f.create_dataset(
"SWAP", (len(self.used_ram), n_processes), dtype="int")
f["SWAP"][:, current_process] = self.swapped_ram
print("Saved SWAP")
else:
f.create_dataset("RAM", data=self.used_ram, dtype="int")
print("Saved RAM")
f.create_dataset("SWAP", data=self.swapped_ram, dtype="int")
print("Saved SWAP")
for key in parameters.keys():
f["RAM"].attrs[key] = parameters[key]
for key in parameters.keys():
f["SWAP"].attrs[key] = parameters[key]
print("Saved parameters in RAM and SWAP")
f.close()
print("Closed file")
if mp.am_master():
f = parallel_hdf_file(filename, "r+", False)
print("Opened file just with master")
f.create_dataset("ElapsedTime", data=self.elapsed_time)
print("Saved elapsed time")
for key in parameters.keys():
f["ElapsedTime"].attrs[key] = parameters[key]
print("Saved parameters in elapsed time")
f.close()
print("Closed file")
return
def load(self, filename):
n_processes = mp.count_processors()
parallel = n_processes > 1
f = parallel_hdf_file(filename, "r", parallel)
if parallel:
current_process = mp.my_rank()
self._used_ram = list(f["RAM"][:, current_process])
self._swapped_ram = list(f["SWAP"][:, current_process])
else:
self._used_ram = list(f["RAM"])
self._swapped_ram = list(f["SWAP"])
self._elapsed_time = list(f["ElapsedTime"])
f.close()
del f
def reset(self):
self._elapsed_time = []
self._used_ram = []
self._swapped_ram = []
# %%
class SavingAssistant:
def __init__(self, series=None, folder=None):
if series is None:
self._series = "Test"
else:
self._series = series
if folder is None:
self._folder = "Test"
else:
self._folder = folder
self._home = vs.get_home()
self._syshome = vs.get_sys_home()
self._sysname = vs.get_sys_name()
self._path = os.path.join(self._home, self._folder, self._series)
if not os.path.isdir(self._path) and mp.am_master():
os.makedirs(self._path)
@property
def series(self):
return self._series
@series.setter
def series(self, value):
self._series = value
self._clear_last()
self._path = os.path.join(self.home, self.folder, self.series)
self._open_new()
return
@property
def folder(self):
return self._folder
@folder.setter
def folder(self, value):
self._folder = value
self._clear_last()
self._path = os.path.join(self.home, self.folder, self.series)
self._open_new()
return
@property
def path(self):
return self._path
@property
def home(self):
return self._home
@property
def syshome(self):
return self._syshome
@property
def sysname(self):
return self._sysname
@path.setter
@home.setter
@syshome.setter
@sysname.setter
def negator(self, value):
raise AttributeError("Cannot set this attribute")
def go_folder(self):
os.chdir(self.path)
def go_home(self):
os.chdir(self.home)
def go_syshome(self):
os.chdir(self.syshome)
def file(self, filename):
if not os.path.isdir(self.path):
self._open_new()
return os.path.join(self.path, filename)
def _clear_last(self):
if mp.am_master():
if os.path.isdir(self.path) and not os.listdir(self.path):
os.rmdir(self.path)
print("Removed dir")
return
def _open_new(self):
if not os.path.isdir(self.path) and mp.am_master():
os.makedirs(self.path)
print("New dir")
return
# %%
def save_midflux(sim, box_x1, box_x2, box_y1, box_y2, box_z1, box_z2,
near2far_box, params, path):
comm = MPI.COMM_WORLD
mpi_rank = comm.Get_rank()
n_processes = mp.count_processors()
parallel = n_processes > 1
parallel_assign = parallel_manager(n_processes, parallel)[0]
near2far = params["near2far"]
dir_file = os.path.join(home, "FluxData/FluxDataDirectory.txt")
dir_backup = os.path.join(home, f"FluxData/FluxDataDir{sysname}Backup.txt")
if mpi_rank == 0:
new_flux_path = vs.datetime_dir(os.path.join(home, "FluxData/MidFlux"),
strftime="%Y%m%d%H%M%S")
broadcasted_data = {'path': new_flux_path}
os.makedirs(new_flux_path)
else:
broadcasted_data = None
broadcasted_data = comm.bcast(broadcasted_data, root=0)
new_flux_path = broadcasted_data["path"]
filename_prefix = sim.filename_prefix
sim.filename_prefix = "MidFlux"
if sysname != "TC":
os.chdir(new_flux_path)
else:
os.chdir(tupachome)
sim.save_flux("X1", box_x1)
sim.save_flux("X2", box_x2)
sim.save_flux("Y1", box_y1)
sim.save_flux("Y2", box_y2)
sim.save_flux("Z1", box_z1)
sim.save_flux("Z2", box_z2)
if near2far:
sim.save_near2far("Near2Far", near2far_box)
os.chdir(syshome)
sim.filename_prefix = filename_prefix
database = vs.retrieve_footer(dir_file)
if parallel_assign(1):
vs.savetxt(dir_backup, np.array([]), footer=database, overwrite=True)
database["flux_path"].append(os.path.split(new_flux_path)[-1])
database["path"].append(path)
for key in midflux_key_params:
try:
if isinstance(params[key], np.ndarray):
database[key].append(list(params[key]))
else:
database[key].append(params[key])
except:
raise ValueError(f"Missing key parameter: {key}")
if parallel_assign(0):
vs.savetxt(dir_file, np.array([]), footer=database, overwrite=True)
if sysname == "TC":
for field in ["X1", "X2", "Y1", "Y2", "Z1", "Z2"]:
copy(os.path.join(tupachome, f"Midfield-{field}.h5"),
os.path.join(new_flux_path, f"Midfield-{field}.h5"))
os.remove(os.path.join(tupachome, f"Midfield-{field}.h5"))
return new_flux_path
# %%
def check_midflux(params):
dir_file = os.path.join(home, "FluxData/FluxDataDirectory.txt")
database = vs.retrieve_footer(dir_file)
try:
database_array = []
for key in midflux_key_params:
if key in params.keys():
if isinstance(database[key][0], bool):
aux_data = [int(data) for data in database[key]]
database_array.append(aux_data)
else:
try:
if len(list(database[key][0])) > 1:
for i in range(len(list(database[key][0]))):
aux_data = [data[i] for data in database[key]]
database_array.append(aux_data)
else:
database_array.append(database[key])
except:
database_array.append(database[key])
database_array = np.array(database_array)
desired_array = []
for key in midflux_key_params:
if key in params.keys():
if isinstance(params[key], bool):
desired_array.append(int(params[key]))
else:
try:
if len(list(params[key])) > 1:
for i in range(len(list(params[key]))):
desired_array.append(params[key][i])
else:
desired_array.append(params[key])
except:
desired_array.append(params[key])
desired_array = np.array(desired_array)
boolean_array = []
for array in database_array.T:
boolean_array.append(
np.all(array - desired_array.T == np.zeros(desired_array.T.shape)))
index = [i for i, boolean in enumerate(boolean_array) if boolean]
if len(index) == 0:
print("No coincidences were found at the midflux database!")
elif len(index) == 1:
print(
f"You could use midflux data from '{database['path'][index[-1]]}'")
else:
print("More than one coincidence was found at the midflux database!")
print(
f"You could use midflux data from '{database['path'][index[-1]]}'")
try:
flux_path_list = [os.path.join(
home, "FluxData", database['flux_path'][i]) for i in index]
except:
flux_path_list = []
return flux_path_list
except IndexError:
print("Midflux database must be empty!")
return []
# %%
def load_midflux(sim, box_x1, box_x2, box_y1, box_y2, box_z1, box_z2,
near2far_box, flux_path):
print(f"Loading flux from '{flux_path}'")
filename_prefix = sim.filename_prefix
sim.filename_prefix = "MidFlux"
os.chdir(flux_path)
sim.load_flux("X1", box_x1)
sim.load_flux("X2", box_x2)
sim.load_flux("Y1", box_y1)
sim.load_flux("Y2", box_y2)
sim.load_flux("Z1", box_z1)
sim.load_flux("Z2", box_z2)
if near2far_box is not None:
sim.load_near2far("Near2Far", near2far_box)
os.chdir(syshome)
sim.filename_prefix = filename_prefix
return
# %%
def save_chunks(sim, params, path):
n_processes = mp.count_processors()
parallel = n_processes > 1
parallel_assign = parallel_manager(n_processes, parallel)[0]
dir_file = os.path.join(home, "ChunksData/ChunksDataDirectory.txt")
dir_backup = os.path.join(
home, f"ChunksData/ChunksDataDir{sysname}Backup.txt")
new_chunks_path = vs.datetime_dir(os.path.join(home, "ChunksData/Chunks"),
strftime="%Y%m%d%H%M%S")
if parallel_assign(0):
os.makedirs(new_chunks_path)
else:
sleep(.2)
filename_prefix = sim.filename_prefix
sim.filename_prefix = "Chunks"
os.chdir(new_chunks_path)
sim.dump_chunk_layout("Layout.h5")
sim.dump_structure("Structure.h5")
os.chdir(syshome)
sim.filename_prefix = filename_prefix
database = vs.retrieve_footer(dir_file)
if parallel_assign(1):
vs.savetxt(dir_backup, np.array([]), footer=database, overwrite=True)
database["chunks_path"].append(os.path.split(new_chunks_path)[-1])
database["path"].append(path)
for key in chunks_key_params:
try:
if isinstance(params[key], np.ndarray):
database[key].append(list(params[key]))
else:
database[key].append(params[key])
except:
raise ValueError(f"Missing key parameter: {key}")
if parallel_assign(0):
vs.savetxt(dir_file, np.array([]), footer=database, overwrite=True)
return new_chunks_path
# %%
def check_chunks(params):
dir_file = os.path.join(home, "ChunksData/ChunksDataDirectory.txt")
database = vs.retrieve_footer(dir_file)
try:
database_array = []
database_strings = {}
for key in chunks_key_params:
if key in params.keys():
if isinstance(database[key][0], bool):
aux_data = [int(data) for data in database[key]]
database_array.append(aux_data)
elif isinstance(database[key][0], str):
database_strings[key] = database[key]
else:
try:
if len(list(database[key][0])) > 1:
for i in range(len(list(database[key][0]))):
aux_data = [data[i] for data in database[key]]
database_array.append(aux_data)
else:
database_array.append(database[key])
except:
database_array.append(database[key])
database_array = np.array(database_array)
desired_array = []
desired_strings = {}
for key in chunks_key_params:
if key in params.keys():
if isinstance(params[key], bool):
desired_array.append(int(params[key]))
elif isinstance(params[key], str):
desired_strings[key] = params[key]
else:
try:
if len(list(params[key])) > 1:
for i in range(len(list(params[key]))):
desired_array.append(params[key][i])
else:
desired_array.append(params[key])
except:
desired_array.append(params[key])
desired_array = np.array(desired_array)
boolean_array = []
for array in database_array.T:
boolean_array.append(
np.all(array - desired_array.T == np.zeros(desired_array.T.shape)))
index = [i for i, boolean in enumerate(boolean_array) if boolean]
for key, values_list in database_strings.items():
for i, value in enumerate(values_list):
if value == desired_strings[key]:
index.append(i)
index_in_common = []
for i in index:
if index.count(i) == len(list(desired_strings.keys())) + 1:
if i not in index_in_common:
index_in_common.append(i)
if len(index_in_common) == 0:
print("No coincidences were found at the chunks database!")
elif len(index_in_common) == 1:
print(
f"You could use chunks data from '{database['path'][index[0]]}'")
else:
print("More than one coincidence was found at the chunks database!")
print(
f"You could use chunks data from '{database['path'][index[0]]}'")
try:
chunks_path_list = [os.path.join(
home, "ChunksData", database['chunks_path'][i]) for i in index_in_common]
except:
chunks_path_list = []
return chunks_path_list
except IndexError:
print("Chunks database must be empty!")
return []
# %%
def save_normfield(params, path):
comm = MPI.COMM_WORLD
mpi_rank = comm.Get_rank()
n_processes = mp.count_processors()
parallel = n_processes > 1
parallel_assign = parallel_manager(n_processes, parallel)[0]
dir_file = os.path.join(home, "FieldData/FieldDataDirectory.txt")
dir_backup = os.path.join(home, f"FieldData/FieldDataDir{sysname}Backup.txt")
if mpi_rank == 0:
new_norm_path = vs.datetime_dir(os.path.join(home, "FieldData/NormField"),
strftime="%Y%m%d%H%M%S")
broadcasted_data = {'path': new_norm_path}
os.makedirs(new_norm_path)
else:
broadcasted_data = None
broadcasted_data = comm.bcast(broadcasted_data, root=0)
new_norm_path = broadcasted_data["path"]
# os.path.chdir(new_norm_path)
if parallel_assign(0):
copy(os.path.join(path, "Field-Lines-Norm.h5"),
os.path.join(new_norm_path, "Field-Lines-Norm.h5"))
# os.chdir(syshome)
database = vs.retrieve_footer(dir_file)
if parallel_assign(1):
vs.savetxt(dir_backup, np.array([]), footer=database, overwrite=True)
database["norm_path"].append(os.path.split(new_norm_path)[-1])
database["path"].append(path)
for key in normfield_key_params:
try:
if isinstance(params[key], np.ndarray):
database[key].append(list(params[key]))
else:
database[key].append(params[key])
except:
raise ValueError(f"Missing key parameter: {key}")
if parallel_assign(0):
vs.savetxt(dir_file, np.array([]), footer=database, overwrite=True)
return new_norm_path
# %%
def check_normfield(params):
dir_file = os.path.join(home, "FieldData/FieldDataDirectory.txt")
database = vs.retrieve_footer(dir_file)
try:
database_array = []
for key in normfield_key_params:
if key in params.keys():
if isinstance(database[key][0], bool):
aux_data = [int(data) for data in database[key]]
database_array.append(aux_data)
else:
try:
if len(list(database[key][0])) > 1:
for i in range(len(list(database[key][0]))):
aux_data = [data[i] for data in database[key]]
database_array.append(aux_data)
else:
database_array.append(database[key])
except:
database_array.append(database[key])
database_array = np.array(database_array)
desired_array = []
for key in normfield_key_params:
if key in params.keys():
if isinstance(params[key], bool):
desired_array.append(int(params[key]))
else:
try:
if len(list(params[key])) > 1:
for i in range(len(list(params[key]))):
desired_array.append(params[key][i])
else:
desired_array.append(params[key])
except:
desired_array.append(params[key])
desired_array = np.array(desired_array)
boolean_array = []
for array in database_array.T:
boolean_array.append(
np.all(array - desired_array.T == np.zeros(desired_array.T.shape)))
index = [i for i, boolean in enumerate(boolean_array) if boolean]
if len(index) == 0:
print("No coincidences were found at the normfield database!")
elif len(index) == 1:
print(
f"You could use normfield data from '{database['path'][index[-1]]}'")
else:
print("More than one coincidence was found at the normfield database!")
print(
f"You could use normfield data from '{database['path'][index[-1]]}'")
try:
norm_path_list = [os.path.join(
home, "FieldData", database['norm_path'][i]) for i in index]
except:
norm_path_list = []
return norm_path_list
except IndexError:
print("Normfield database must be empty!")
return []
# %%
def load_normfield(norm_path):
print(f"Loading field from '{norm_path}'")
n_processes = mp.count_processors()
parallel = n_processes > 1
parallel_assign = parallel_manager(n_processes, parallel)[0]
norm_file = parallel_hdf_file(os.path.join(norm_path, "Field-Lines-Norm.h5"),